

AVENIDA NOROESTE

RELATÓRIO TÉCNICO DE PROJETO Revisão 02

OUTUBRO DE 2019

Referências Cadastrais

Cliente Prefeitura Municipal de Pouso Alegre

Localização Pouso Alegre, Minas Gerais

Título Avenida Noroeste

Contato José Carlos Costa

E-mail josecarloscostacmg@gmail.com

Líder do Projeto: Aloísio Caetano Ferreira

Coordenador: Denis de Souza Silva

Projeto/centro de custo: 26/2019-01

Data do documento: 14/06/2019

Elaborador/Autor	Flávia Cristina Barbosa	Engenheira Civil	
Verificador/aprovador	Denis de Souza Silva	Coordenador do projeto	

Isenção de Responsabilidade:

Este documento é confidencial, destinando-se ao uso exclusivo do cliente, não podendo ser reproduzido por qualquer meio (impresso, eletrônico e afins) ainda que em parte, sem a prévia autorização escrita do cliente.

Este documento foi preparado pela Dac Engenharia com observância das normas técnicas de Pouso Alegre e em estrita obediência aos termos do pedido e contrato firmado com o cliente. Em razão disto, a Dac Engenharia isenta-se de qualquer responsabilidade civil e criminal perante o cliente ou terceiros pela utilização deste documento, ainda que parcialmente, fora do escopo para o qual foi preparado.

Equipe Técnica

Responsável Técnico - Projetos Civis

Flávia Cristina Barbosa Engenheira Civil	
Nº CREA: MG 187.842/D	№ ART: 5179084

Responsável Técnico - Projeto de Drenagem

Aloisio Caetano Ferreira Engenheiro Hídrico	
Nº CREA: MG 97.132/D	№ ART: 5179119

Coordenação

Denis de Souza Silva	
Engenheiro Hídrico	
Nº CREA: MG 127.216/D	№ ART: 5174910

Elaboração

Normando M. M. Neto	Arquiteto
Marcos Campos	Engenheiro Ambiental
Rafael Nobre Leite	Engenheiro Civil
Adriano Marcelo de Campos	Engenheiro Eletricista
German Lozano	Engenheiro Mecânico
William Baradel Lari	Engenheiro Civil
Fabiana Yoshinaga	Engenheira Civil
Camila Andrade	Engenheira Civil
Thais Coimbra	Engenheira Civil
Diego Moutinho Caetano	Engenheiro Civil

i

Renato Silveira	Estag. Engenharia Civil
Lucas Simões Kubo	Estag. Engenharia Civil
Igor Paiva Lopes	Estag. Engenharia Hídrica
Jacqueline Barcheri	Estag. Arquitetura
Marta Ribeiro	Estag. Engenharia Civil
Felipe Guimarães Alexandre	Estag. Engenharia Civil

1.	OBJETO	2
2.	LEVANTAMENTO PLANIALTIMÉTRICO	4
3.	ESTUDO GEOTÉCNICO	5
3.1.	CARACTERÍSTICAS PEDOLÓGICAS E GEOLÓGICAS DO LOCAL	5
4.	ESTUDOS HIDROLÓGICOS	7
4.1.	METODOLOGIA APLICADA	7
4.2.	MÉTODO RACIONAL	7
4.2.1.	Coeficiente de Escoamento Superficial	8
4.2.2.	Tempo de Concentração e Período de Retorno	8
4.2.3.	Intensidade de Precipitação	9
4.2.4.	Vazão	9
5.	PROJETO GEOMÉTRICO	10
5.1.	PARÂMETROS DE CONCEPÇÃO DO ACESSO VIÁRIO	10
5.2.	CLASSIFICAÇÃO DAS VIAS	10
5.2.1.	Veículo de Projeto	10
5.2.2.	Largura da Via	11
5.2.3.	Velocidade Diretriz	11
5.3.	APRESENTAÇÃO DO PROJETO GEOMÉTRICO	11
5.3.1.	Em Planta:	11
5.3.2.	Em Perfil:	11
5.4.	LOCAÇÃO DO SISTEMA VIÁRIO	11
6.	PROJETO DE TERRAPLENAGEM	13
6.1.	TALUDES PROJETADOS	13
6.2.	RESUMO DAS QUANTIDADES	13
6.3.	MÉTODO DE CÁLCULO UTILIZADO	14
6.4.	ORIENTAÇÕES DE PROJETO	14
6.4.1.	Serviços Topográficos	15
6.4.2.	Desmatamento, Destocamento e Limpeza	15
6.4.3.	Corte do Terreno	15
6.4.4.	Aterro	16
6.4.5.	Material de Aterro	17
7.	PROJETO DE DRENAGEM	18
7.1.	VERIFICAÇÃO DA CAPACIDADE DE ESCOAMENTO DA SARJETA	18
7.2.	DIMENSIONAMENTO HIDRÁULICO DAS GALERIAS	19
7.2.1.	Posicionamento	19
7.2.2.	Diâmetro Mínimo	20
723	Cálculo da Vazão na Galeria	20

7.2.4.	Velocidade de Escoamento	.20
7.2.5.	Capacidade Máxima da Galeria	.21
7.2.6.	Recobrimento Mínimo da Galeria	.22
7.2.7.	Descarte	.22
8.	PAVIMENTAÇÃO	.23
8.1.	MÉTODO UTILIZADO	23
8.2.	PARÂMETROS DO DIMENSIONAMENTO	23
8.2.1.	Número "N"	.23
8.2.2.	Índice de Suporte do Subleito (CBR)	.24
8.3.	DETERMINAÇÃO DAS ESPESSURAS DAS CAMADAS DOS PAVIMENTOS	24
8.3.1.	Dimensionamento do Pavimento das Calçadas	.28
8.3.2.	Dimensionamento do Pavimento das Ciclovias	.29
8.3.3.	Especificações de Serviços	.29
9.	PROJETO DE PAISAGISMO	.30
9.1.	CRITÉRIO DE SELEÇÃO DAS ESPÉCIES	30
9.2.	ESPÉCIES ESCOLHIDAS	30
9.3.	ESPECIFICAÇÕES DE PLANTIO	31
9.3.1.	Fornecimento	.31
9.3.2.	Preparo Geral do Solo	.31
9.3.3.	Plantio	.32
9.3.4.	Plantio das Gramíneas – Taludes	.32
9.3.5.	Plantio das Gramíneas – Canteiro e Faixa Verde	.32
10.	PROJETO DE SINALIZAÇÃO	.33
10.1.	SINALIZAÇÃO HORIZONTAL	33
10.1.1.	Linha de Retenção (LRE)	.33
10.1.2.	Linhas de Separação de Fluxo de Sentidos Opostos	.33
10.1.3.	Linhas de Separação de Fluxo de Mesmo Sentido	.34
10.1.4.	Linha de Bordo (LBO)	.35
10.1.5.	Linha de continuidade (LCO)	.36
10.1.6.	Zebrado de Preenchimento da Área de Pavimento Não Utilizável (ZPA)	.36
10.1.7.	Faixa de Travessia de Pedestre (FTP)	.37
10.1.8.	Legenda "PARE"	.38
10.1.9.	Símbolo "Dê a Preferência"	.38
10.1.10.	Setas indicativas de posicionamento na pista para a execução de movimentos (PEM) .	.39
10.2.	SINALIZAÇÃO VERTICAL	39
10.2.1.	Parada Obrigatória (R-1)	.39
10.2.2.	Regulamentação de Velocidade (R19)	.40
10.2.3.	Advertência de Passagem Sinalizada de Pedestre (A-32B)	.40
10.2.1.	Dê a Preferência (R-2)	.40
10.2.1.	Sentidos de Circulação (R-33, R24-a e R24-b)	.40

10.3. REBAIXOS DE ACESSIBILIDADE

41

Lista de Tabelas

Tabela 4.1 – Coeficiente de escoamento superficial	8
Tabela 7.1 – Coeficiente de rugosidade para diferentes materiais	21
Tabela 8.1 – Tráfego por Classificação Funcional da Via	23
Tabela 8.2 – Tipo de revestimento em função de tráfego	24
Tabela 8.3 – Coeficientes k	26
Tabela 9.1 – Espécies escolhidas para plantio	31
Lista de Figuras	
Figura 1.1 – Conexão da rodovia BR-459 aos bairros Santa Edwiges e Fernandes através d Noroeste	
Figura 1.2 – Conexão da rodovia BR-459 ao centro através da Avenida Noroeste	3
Figura 3.1 – Mapa Geológico de Pouso Alegre	5
Figura 3.2 – Mapa pedológico de Pouso Alegre	6
Figura 5.1 – Seção Transversal da Via	11
Figura 7.1 – Sarjeta tipo B	18
Figura 7.2 – Características hidráulicas da sarjeta	19
Figura 7.3 – Detalhes hidráulicos da sarjeta	19
Figura 8.1 – Ábaco de determinação da espessura do pavimento	26
Figura 8.2 – Pavimento Flexível Tipo 1	28
Figura 8.3 – Pavimento Flexível Tipo 2 (com Reforço do Subleito)	28
Figura 8.4 - Pavimento Intertravado Calçada de 6 cm	28
Figura 8.5 – Pavimento Flexível Ciclovia	29
Figura 10.1 – Posicionamento de Linha de Retenção (LRE)	33
Figura 10.2 – Exemplo de Faixa LFO-1	34
Figura 10.3 – Linha Simples Contínua (LMS-1)	34
Figura 10.4 – Linha Simples Seccionada (LMS-2)	35
Figura 10.5 – Linha de Bordo (LBO)	36
Figura 10.6 – Exemplo de ZPA	37
Figura 10.7 – Faixa de travessia de pedestre do projeto	37
Figura 10.8 – Legenda "PARE"	38

Figura 10.9 – Símbolo "Dê a preferência"	38
Figura 10.10 – Placas de parada obrigatória	40
Figura 24: Detalhamento da rampa de acessibilidade	41
Lista de Equações	
Equação 4.1 – Método Racional	7
Equação 4.2 – Equação de chuva intensa de Pouso Alegre	9
Equação 7.1 – Método de Izzard/Manning	18
Equação 7.2 – Cálculo da velocidade de escoamento	20
Equação 7.3 – Cálculo do raio hidráulico	21
Equação 7.4 – Determinação da vazão máxima	21

Apresentação

O Projeto da Avenida Noroeste foi idealizado em 2016 e inicialmente foi projetado pela CONEPP Consultoria.

O orçamento previsto em 2016 não seria suficiente para execução da obra em 2019, devido as correções monetárias do período, assim, a modificação do Projeto da Avenida Noroeste vem trazer a viabilidade econômica da execução através da supressão da alça viária na parte baixa da via e inclui obras de drenagem necessárias para a Rua Sebastião Theodoro Ribeiro que intercepta a futura Avenida Noroeste.

Trata-se de importante obra, que proporcionará melhoria na mobilidade urbana, em uma das rotas de entrada do município, trazendo segurança e conforto a pedestres, ciclistas e motoristas.

Este projeto utiliza a base de dados da CONEPP, tais como topografia, sondagens e ensaios geotécnicos.

Houve adequações nas características principais do projeto anterior, como no alinhamento horizontal, no perfil vertical da avenida e no projeto de interseção (que neste projeto foi elaborada com a Rua Bento Dória Ramos e com o Acesso ao Presídio).

Foi mantido, dentro do possível, os elementos da seção transversal.

1. OBJETO

A Avenida Noroeste será concebida como via coletora de interligação entre a rodovia BR-459 e os bairros Santa Edwiges e Fernandes.

Atualmente, este acesso é feito pela Rua Bento Dória Ramos, de mão dupla e pista simples, embora haja um caminho não pavimentado entre estes pontos.

O mapa da Figura 1.1 mostra a região citada.

Figura 1.1 – Conexão da rodovia BR-459 aos bairros Santa Edwiges e Fernandes através da Av.

Noroeste

A importância desta via reflete além do acesso aos bairros diretamente beneficiados. Ela visa compor um sistema de ligação do acesso noroeste da BR-459 ao centro da cidade, através de uma ligação com uma via em implantação, referente a um novo loteamento, conforme Figura 1.2.

Figura 1.2 – Conexão da rodovia BR-459 ao centro através da Avenida Noroeste.

2. LEVANTAMENTO PLANIALTIMÉTRICO

A Prefeitura Municipal de Pouso Alegre disponibilizou arquivos em formato DWG contendo o levantamento topográfico – realizado pela empresa *Conepp Consultoria* – da área onde será implantada a Avenida Noroeste, contendo o modelo digital do terreno, os marcos topográficos e a vetorização de elementos existentes como ruas, córregos e edificações.

A topografia disponibilizada encontra-se no Sistema de Coordenadas SAD 69.

3. ESTUDO GEOTÉCNICO

Os estudos geotécnicos têm como objetivo a caracterização das formações geológicas ocorrentes, no sentido de definir as condições de subleito para implantação da via.

A Prefeitura Municipal de Pouso Alegre disponibilizou os resultados das sondagens realizadas pela empresa *Delft Serviços Ltda*, contendo ensaio de compactação, análise granulométrica e determinação da umidade higroscópica, do Índice de Suporte Califórnia (CBR), limite de plasticidade e limite de liquidez.

Os resultados das sondagens estão no Anexo I deste documento.

3.1. CARACTERÍSTICAS PEDOLÓGICAS E GEOLÓGICAS DO LOCAL

Com relação à geologia, o município de Pouso Alegre – MG possui predominantemente depósitos aluviais (ENa), uma pequena parcela de rochas metassedimentares que compõem a Formação Pouso Alegre (NP3pa) e grandes complexos gnáissicos em seu entorno (NP2cm e NP2sjm).

Os depósitos aluviais possuem como característica – Aquíferos granulares, livres, com espessura de até 10-15m, permeabilidade entre 5 e 10 m/dia e porosidade efetiva da ordem de 10%. Águas um pouco salobras em algumas áreas.

A Formação Pouso Alegre apresenta um Aquífero granular superficial. Capacidade de produção variável em função da sua espessura e composição granulométrica. Gnássico-Granítico — Sistema aquífero em meio fissurado. Baixas permeabilidade e porosidade. Pouco explotados através de poços. Apresentam baixa a média capacidade de produção. Águas alcalinas e com dureza elevada.

Figura 3.1 – Mapa Geológico de Pouso Alegre Fonte: RIBEIRO, 2011

Onde:

- ENa: Depósitos fluviais, cascalho, areia e lama.
- NP3pa: Formação Pouso Alegre brecha polimítica; conglomerado polimítico, arenito fedspatolítico e pelito; arenito feldspatolítico e arcóseo.
- NP2cm: Complexo gnáissico Cachoeira de Minas ortognaisses granodioríticos a tonalíticos. Localmente fácies migmatítica, ortopiroxênio, granulito máfico com clinopiroxênio, granada, plagioclásio e hornblenda, granada quartzito (metachert) e quartzitos feldspáticos.
- NP2sjm: Complexo gnáissico São João da Mata ortognaisse granítico/granodiorítico
 e paragnaisse cinzento, migmatítico, ambos localmente com ortopiroxênio.
 Pegmatitos e apófises graníticas. Lentes de anfibolito e localmente quartzito.

A região é composta em sua maioria por Latossolo Vermelho distrófico do típico A (LVd2) moderado de textura argilosa passível de ser encontrado na fase cerrado, relevo plano e suave ondulado. A região também possui Argilossolo vermelho-amarelo distrófico típico A (PVAd2) moderada textura média/argilosa presente em regiões de floresta subcaducifólia, relevo suave ondulado e ondulado.

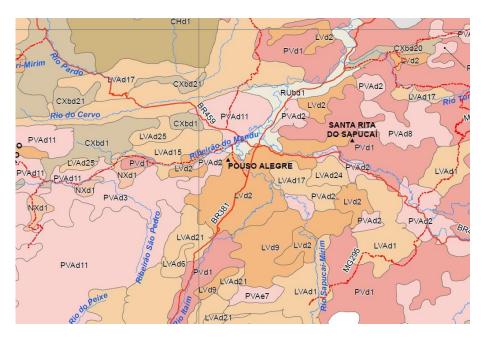


Figura 3.2 – Mapa pedológico de Pouso Alegre Fonte: UFV, 2010.

4. ESTUDOS HIDROLÓGICOS

Os estudos hidrológicos irão determinar as descargas máximas nas áreas em estudo, a fim de dar base ao dimensionamento das estruturas hidráulicas do sistema de drenagem em questão. Para isso, é necessário o diagnóstico do regime pluvial e da natureza das precipitações intensas da região, como é apresentado a seguir.

4.1. METODOLOGIA APLICADA

Para a determinação da precipitação máxima utilizou-se a equação que correlaciona os parâmetros intensidade, duração e frequência de chuvas. Essa relação permite ainda a obtenção de precipitações máximas para diferentes Tempos de Concentração – tc, e Períodos de Retorno – TR. Nas estimativas de vazões a partir de dados de chuva a grandeza utilizada é a Precipitação Excedente, pelo fato de esta contribuir efetivamente para a formação do escoamento superficial

As vazões de projeto podem ser estimadas através de métodos estatísticos diretos e indiretos. Estas metodologias são determinadas de acordo com as dimensões das áreas de drenagem, da seguinte forma:

- Sub-bacias com áreas de até 5 km²: utiliza-se o Método Racional:
- Sub-bacias com áreas entre 5 km² e 10 km²: utiliza-se o Método Racional Corrigido;
- Sub-bacias com área acima de 10 km²: utiliza-se o Método de Ven Te Chow.

Desta forma, para a bacia de projeto possui uma área menor que 5km², utilizou-se o método racional.

4.2. MÉTODO RACIONAL

O método mais utilizado para o cálculo da vazão a partir da transformação de chuva em vazão para análise em pequenas bacias hidrográficas é o método racional, devido à simplicidade de aplicação e facilidade do conhecimento e controle dos parâmetros necessários.

Admite-se, na sua aplicação, que a chuva apresente uma intensidade constante, uniformemente distribuída sobre a superfície da bacia, e que sua duração seja maior ou igual ao tempo de concentração na bacia. Como a intensidade de chuva decresce com o aumento da duração, a descarga máxima resulta de uma chuva com duração igual ao tempo de concentração da bacia.

Este método, descrito matematicamente pela Equação 4.1, representa uma relação entre a vazão máxima de escoamento superficial e a intensidade de precipitação, dependendo das seguintes variáveis para a sua determinação: tipo de solo e do uso da terra, duração e intensidade da chuva e características físicas da rede de drenagem existente.

 $Q = 0,00278 \cdot C \cdot i \cdot A$

Equação 4.1 – Método Racional

Onde:

- Q: Vazão de projeto (m³/s);
- C: Coeficiente de escoamento superficial (adimensional);
- I: Intensidade da chuva de projeto (mm/h);
- A: Área de drenagem (ha).

4.2.1. Coeficiente de Escoamento Superficial

Coeficiente também denominado por deflúvio superficial ou coeficiente de "runoff". Variável determinada em função de uma série de fatores, como o tipo do solo, ocupação da bacia, umidade antecedente, intensidade da chuva e outros. Assim, devido às diversas condições e combinações dos fatores citados, apenas parte do volume precipitado sobre a bacia atinge a seção sob a forma de escoamento superficial. Portando adotou-se um coeficiente de escoamento superficial de 0,90, conforme valores indicados na Tabela 4.1.

Descrição das Áreas Coeficiente de das Bacias Tributáveis Deflúvio "C" Ruas Asfalto 0,70 a 0,95 Concreto 0,80 a 0,95 **Gramados**; solos arenosos Plano, 2% 0,05 a 0,10 Médio, 2 a 7% 0,10 a 0,15 Íngreme, 7% 0,15 a 0,20 **Gramados**; solo compacto Plano, 2% 0,13 a 0,17 Médio, 2 a 7% 0,18 a 0,22 Íngreme, 7% 0,19 a 0,35

Tabela 4.1 - Coeficiente de escoamento superficial

4.2.2. Tempo de Concentração e Período de Retorno

O tempo de concentração é considerado o período, em minutos, que uma gota de água de chuva cai no ponto mais distante da bacia, demora a chegar até a seção de análise. Devido às características das curvas de intensidade, duração e frequência da chuva, o tempo de concentração inicial mínimo adotado para as bacias é de 10 minutos.

O tempo de retorno ou período de retorno de uma chuva representa o risco que o empreendimento ou projeto está assumindo no dimensionamento de uma obra hidráulica. Ou seja, qual é o grau de segurança que se deseja proporcionar ao empreendimento, sendo que ele é o inverso da frequência com que a chuva ou vazão venha a ser igualada ou ultrapassada num ano qualquer.

Para escolher qual o tempo de retorno que irá utilizar no dimensionamento do projeto hidráulico é importante analisar os prejuízos tangíveis e intangíveis que possam a vir a ser causados por eventos extremos de chuva. Portanto, para o empreendimento em questão foi adotado o período de retorno (TR) igual a 10 anos.

4.2.3. Intensidade de Precipitação

Para determinar a intensidade máxima de chuva de um determinado local há uma equação que correlaciona os parâmetros como intensidade, duração e frequência (IDF) das chuvas, e ainda permite obter valores de para diferentes tipos de tempos de concentração e tempos de retorno. Estes são definidos por uma série histórica de dados de chuvas, de mais ou menos 30 anos, do local em questão.

No empreendimento em questão, utilizou a equação de chuva do município de Pouso Alegre gerada pela interpolação de dados do software *Plúvio 2.1*. Assim, obteve-se a seguinte equação de chuva:

$$i = \frac{667,338 \cdot T^{0,184}}{(tc + 20,869)^{0,635}} = 115,478 \, mm/h$$

Equação 4.2 - Equação de chuva intensa de Pouso Alegre

Onde:

- i Intensidade da chuva (mm/h);
- tc tempo de concentração (min);
- T Período de retorno (anos).

4.2.4. Vazão

A vazão calculada sintetiza as considerações e cálculos realizados em relação ao tempo de concentração do escoamento e à intensidade de chuva, ao coeficiente de escoamento superficial e a área de contribuição de cada sub- bacia do projeto.

5. PROJETO GEOMÉTRICO

O projeto geométrico é a base do projeto viário como um todo, pois dele decorre uma série de condicionantes para os demais. Procura-se, como regra geral, escolher uma solução que seja compatível com os demais projetos.

O projeto geométrico foi concebido tendo como objetivo a interligação entre a Rodovia BR-459, no trecho do Ribeirão das Mortes, e a Av. Cel. Cândido de Castro Coutinho, tendo como base os estudos topográficos e os estudos geotécnicos associados à visita técnica "in loco".

O projeto da Av. Noroeste comtempla, ainda, acesso à rua Bento Dória Ramos, Rua Sebastião Theodoro Ribeiro e ao presídio de Pouso Alegre.

Para o desenvolvimento do greide da via foram adotadas cotas que possibilitassem uma melhor compensação de volumes de corte e aterro e a projeção horizontal de menor interferência nas áreas residenciais.

5.1. PARÂMETROS DE CONCEPÇÃO DO ACESSO VIÁRIO

A seguir, descrevem-se os parâmetros de concepção adotados para a via de acesso.

5.2. CLASSIFICAÇÃO DAS VIAS

A classificação da via, bem como as informações de tráfego, fundamenta para que o planejamento do sistema viário seja baseado na identificação das necessidades de deslocamento.

A via projetada neste trabalho visa compor o sistema viário local atendendo ao Bairro Santa Edwiges de forma funcional e classifica-se como via coletora, com velocidade diretriz de 50 km/h.

5.2.1. Veículo de Projeto

O veículo de projeto adotado foi o veículo tipo SR, denominado genericamente por Semirreboque. Representa os veículos comerciais articulados, com comprimento próximo ao limite para veículos articulados, sendo constituídos normalmente de uma unidade tratora simples com um semirreboque.

A consideração de um ou outro tipo de veículo para fins de balizamento do projeto geométrico de uma via depende fundamentalmente da finalidade da via e dos volumes (e composições) previstos pelo tráfego a ser por ela atendido.

Este tipo de veículo possui raio mínimo de giro de 6,00 m, este parâmetro influencia diretamente nos raios mínimos de curvatura projetados para a via. Devido a este fator o raio mínimo de curvatura utilizado no projeto foi de 6,00m.

5.2.2. Largura da Via

A largura da via foi definida tendo como base o caderno de encargos da Prefeitura Municipal de Pouso Alegre, atentando-se para as possibilidades geométricas locais e as características econômicas necessárias.

Assim, a largura final definida é apresentada na Figura 5.1 que se segue:

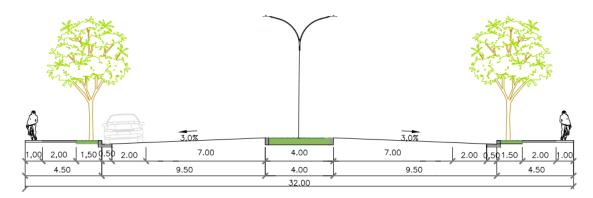


Figura 5.1 - Seção Transversal da Via

5.2.3. Velocidade Diretriz

Para que o veículo de projeto (SR) consiga prosseguir sob o raio de curvatura mínimo de projeto (6,00 m) a velocidade diretriz da via deve ser de 50 km/h.

5.3. APRESENTAÇÃO DO PROJETO GEOMÉTRICO

O projeto geométrico está apresentado nas pranchas DAC-PMPA-NOR-PE-GEO-03-R00, DAC-PMPA-NOR-PE-GEO-04-R00 e DAC-PMPA-NOR-PE-GEO-05-R00, contendo os elementos a seguir:

5.3.1. Em Planta:

- Indicação dos eixos projetados com estacas marcadas a cada 20 (vinte) metros, ou menos quando necessário;
- Definição dos elementos cadastrais contidos na faixa do projeto.

5.3.2. Em Perfil:

- Comprimento e percentagens das rampas;
- Comprimento das projeções horizontais e verticais de concordância; Afastamento entre o PIV e a parábola;
- Estaqueamento da linha locada, com estacas indicadas de 20 em 20 metros; Perfil do terreno natural, pelo eixo projetado.

5.4. LOCAÇÃO DO SISTEMA VIÁRIO

O método de cálculo para a elaboração do projeto geométrico utilizado foi o analítico, através de microprocessador programável. Através deste processo foram calculados todos os pontos de intersecção de eixos de vias, elementos de curvas, além dos demais elementos essenciais ao projeto.

Tendo em vista as características do Sistema Viário projetado, sugere-se que seja adotada a seguinte metodologia para sua exata locação no campo:

 Partindo-se de uma das linhas-base, determinar uma poligonal de referência, preferencialmente fechada, tal que seus vértices sejam os pontos notáveis dos eixos das vias, a saber: PC, PI, PT e pontos de intersecção de vias.

O erro máximo de fechamento tolerável, para efeito de locação, será de 1:2000, ou seja, um centímetro de erro para cada vinte metros medidos.

Na prancha DAC-PMPA-NOR-PE-GEO-03-R00 são apresentadas as tabelas de locação do projeto geométrico.

6. PROJETO DE TERRAPLENAGEM

No Projeto de Terraplenagem são calculados os volumes de movimentação de terra para implantação do sistema viário. Neste projeto são definidas as proporções dos taludes, analisando a capacidade do solo para estabilidade dos cortes e corpos de aterro.

O cálculo de volume de terraplenagem foi executado através da modelagem tridimensional do terreno acabado, elaborada a partir dos perfis longitudinais das vias e notas de serviço do pavimento acabado.

Neste documento são apresentadas recomendações construtivas e métodos antierosivos necessários para garantir a estabilidade dos taludes projetados.

6.1. TALUDES PROJETADOS

Os taludes em corte deverão ter inclinação máxima de 45° ou razão de 1 por 1 (vertical e horizontal). Os taludes em aterro deverão ter inclinação máxima de +/- 34° ou razão de 1 por 1,5 (vertical e horizontal).

Nos taludes serão executadas obras de proteção contra erosão, com o plantio de grama pelo processo de plantio de placas.

Os cálculos dos volumes de movimentação de terra foram desenvolvidos através do método computacional com modelagem tridimensional.

6.2. RESUMO DAS QUANTIDADES

Definidas as características geométricas dos segmentos, das seções tipos e através do programa computacional *Autocad Civil 3D*, são geradas automaticamente superfícies de projeto e seções transversais com áreas de cortes e aterros calculadas, sendo assim geradas automaticamente as planilhas de Volumes para cortes e aterro, apresentadas na prancha DAC-PMPA-NOR-PE-TRP-06-R00

A seguir apresenta-se o resumo de quantidades do projeto de terraplenagem:

Para elaboração de quantitativo, é considerado para fins de medição e acerto financeiro os empolamentos de materiais escavados e/ou desmontados, conforme valores apresentados a seguir:

Argilas: 22 a 27%Areias: 11 a 16%Rocha: 60 a 70%

Neste projeto foi considerado o valor de 27%, por se tratar de material argiloso.

6.3. MÉTODO DE CÁLCULO UTILIZADO

Todos os elementos analíticos foram calculados através de microprocessador programável, com erro máximo tolerável de +/- 0,05 m, tendo como fundamento teórico o estudo econômico e as normativas técnicas em vigor.

6.4. ORIENTAÇÕES DE PROJETO

O projeto de terraplenagem somente poderá ser executado após o levantamento das informações obtidas através do Levantamento Planialtimétrico Cadastral, do Projeto Geométrico, que fixa os elementos geométricos básicos, e dos Estudos Geotécnicos, que fornecem especificações de materiais e executivas.

Os serviços de terraplanagem consistirão da limpeza da faixa de movimentação de terra, extração e remoção de materiais inadequados para fundação dos aterros, execução de cortes e aterros, operação de acabamento da plataforma e dos taludes dos cortes e aterros, execução de drenagem superficial e profunda, conforme recomendações do projeto.

Tendo em vista a topografia do terreno, o projeto de terraplanagem teve os seguintes condicionantes, que deverão ser seguidos durante a execução.

- Por ocasião da execução das obras de terraplenagem deverá ser observado atentamente o comportamento do terreno.
- Todas as árvores e arbustos existentes que não impeçam os trabalhos serão devidamente protegidos e conservados.
- Os transportes serão efetuados através de meios apropriados, evitando sujar ruas e estradas e, em caso de inobservância ou acidente deverá ser providenciada a imediata remoção do material e a limpeza da via de circulação.
- O número de ensaios tecnológicos sob os aterros e cortes será o necessário e suficiente para permitir um controle estatístico das características geotécnicas do material compactado. Serão realizados no mínimo os ensaios geotécnicos recomendados pela ABNT.
- Depois de lograda a inclinação definitiva dos taludes, a superfície será aplainada e retirado o material solto e compactado.
- A via projetada deverá obedecer às cotas apresentadas na planta de terraplanagem.
- Os taludes em corte deverão ter inclinação máxima de +/- 45º ou razão de 1 por 1 (vertical e horizontal).
- Os taludes em aterro deverão ter inclinação máxima de +/- 34º ou razão de 1 por 1,5 (vertical e horizontal), recomenda-se que sua execução tenha uma sobrelargura de ao menos um metro e que após sua execução seja executado corte com motoniveladora de forma que este aterro seja formado exatamente com inclinação de 34 graus.
- Em todos os taludes, serão executadas obras de proteção contra erosão, com plantio de grama, em toda extensão do talude.

• Os serviços deverão ser executados obedecendo as Normas e Especificações Gerais das normativas vigentes.

6.4.1. Serviços Topográficos

Os serviços topográficos consistirão de implantação de referência de nível, locação da área a ser aterrada, nivelamento de cortes e de plataforma.

A locação deverá ser executada conforme projeto executivo, cabendo à fiscalização realizar as verificações para o real cumprimento da geometria de projeto.

6.4.2. Desmatamento, Destocamento e Limpeza

O desmatamento compreende o corte e a remoção e toda a vegetação, qualquer que seja a sua densidade e tipo. O destocamento e limpeza compreendem as operações de remoção total dos tocos e raízes, de escavação e remoção da camada de solo orgânico, na profundidade indicada pela fiscalização, e dos matacões encontrados nessa profundidade.

Compreende-se, ainda, como operação de limpeza, a demolição de alicerces de construções existentes dentro da faixa de serviço e a remoção conveniente dos entulhos resultantes, desde que tal demolição possa ser processada através da utilização de tratores de esteiras.

O material proveniente do desmatamento, destocamento e limpeza, será removido para bota-fora ou estocado. A remoção ou estocagem dependerá de eventual utilização, a critério da fiscalização, não sendo permitida a permanência de entulhos nas adjacências do corpo da obra, nem a sua deposição nos locais de aterros. É proibido proceder à queima do material em referência.

No caso de jazidas de empréstimos, o material proveniente do desmatamento, destocamento e limpeza deverá ser estocado em local determinado pela fiscalização ou constante do projeto, podendo eventualmente ser retransportado para as áreas de onde for retirado o material de empréstimo, após seu conveniente acabamento e acerto.

Nas áreas destinadas a cortes, a camada correspondente à média de 30 (trinta) centímetros abaixo do perfil natural deverá ficar isenta de tocos e raízes.

Os locais de bota-fora dos materiais provenientes do desmatamento, destocamento e limpeza, salvo no caso de reutilização, serão indicados pela fiscalização e/ou no projeto executivo.

Nenhum movimento de terra na área destinada à implantação dos aterros poderá ser iniciado enquanto as operações de desmatamento, destocamento e limpeza nas áreas devidas não tenham sido totalmente concluídas.

6.4.3. Corte do Terreno

Os trabalhos deverão ser executados com a cautela e segurança indispensáveis à preservação da vida dos operários e de forma a não colocar em perigo propriedades vizinhas.

O excesso de material, quando não aproveitado, deverá ser enviado ao bota-fora determinado no projeto.

Nenhuma escavação poderá ser executada com profundidade tal que cause desconfinamento do terreno de fundação de prédios vizinhos seja por diferença de nível, seja por efeito de percolação de água.

O talude deverá ser imediatamente protegido após a sua execução.

Em casos de presença de veios de água ou de ser atingido a nível freático e não previsto no projeto, será requerida de imediato a presença de especialista para não vir a ser comprometida a estabilidade do maciço.

6.4.4. Aterro

Os materiais a serem utilizados no aterro devem ter características uniformes e permitir a obtenção do grau de compactação mínimo especificado para o trabalho em causa.

Em caso algum deve ser admitida a utilização de turfas, argilas orgânicas nem materiais com matéria orgânica, micáceas ou diatomácias devendo ainda ser evitado o emprego de materiais expansivos. Igualmente, não será permitida a inclusão de troncos, tocos e raízes nos aterros.

O material dos cortes locais, que venham a ser utilizados para aterro, deve passar por processo de exame e aprovação.

Deverão ser observadas as recomendações da ABNT NB-501 (projeto) que estabelece o controle tecnológico obrigatório na execução de aterros em qualquer dos seguintes casos:

- Aterros com responsabilidade de suporte de fundações, pavimento ou estrutura de contenção;
- Aterros com altura superiores a 1 metro;
- Aterros com volumes superiores a 1.000 m³.

Os aterros e/ou reaterros, independentemente de sua área e volume, serão executadas em camadas com espessura máxima de 20 cm de terra empolada.

Em qualquer das circunstâncias, o corpo de aterro deverá atingir 98% de grau de compactação em relação ao ensaio do Proctor Normal. Para confirmação da observância desta forma, a Fiscalização recolherá amostras e procederá aos testes necessários.

A camada final de terraplenagem (CFT) deve apresentar grau de compactação de 100% do Ensaio de Proctor Normal, desvio de umidade em relação a ótima de +/- 1% (sendo a umidade ótima de 23,9%), CBR ≥ 11% e expansão ≤ 3%.

Somente será aceita a compactação mecânica, independentemente do volume ou dimensões da área de aterro ou reaterro.

Quando os aterros e/ou reaterros forem executados junto a prédios, vizinhos, muro de arrimo, cortinas de concreto ou taludes existentes, a compactação deverá ser feita por processo que evite fortes vibrações que ocasionarão abalos ou solapamentos nos prédios vizinhos ou terrenos limítrofes.

6.4.5. Material de Aterro

Fica a critério da contratante a escolha da jazida de material de aterro ou mesmo a utilização do material proveniente do corte, desde que o material atenda as seguintes condicionantes:

- No caso de compactação de solos com mais de 20% passante na peneira nº 200 (siltes e argilas) deverão ser utilizados rolos compactadores tipo pé-de-carneiro e a espessura da camada compactada deverá ser menor que 30 cm (após a compactação). Nos locais sem acesso a rolos, deverão ser empregados "sapos" mecânicos e espessura máxima da camada de 20 cm.
- Quando o aterro for constituído por solos grossos (areias e pedregulhos) com menos de 12% passante na peneira nº 200, deverão ser utilizados rolos vibratórios e/ou placas vibratórias (nos locais sem acesso a rolos). Recomenda-se frequência de vibração entre 25 e 40 Hz. A máxima espessura de camada compactada deverá ser de 40 cm.
- Deverão ser ainda adequadamente selecionadas e controladas as seguintes variáveis: peso mínimo do rolo compactador, comprimento da pata dos rolos pé-decarneiro, velocidade de passagem do rolo (sempre inferior a 8 km/h) e número de passagens do rolo.

7. PROJETO DE DRENAGEM

O projeto de drenagem objetiva definir os dispositivos de coleta, condução e deságue das águas superficiais que precipitam sobre o terreno, bem como sobre os taludes e áreas que convergem ao mesmo.

7.1. VERIFICAÇÃO DA CAPACIDADE DE ESCOAMENTO DA SARJETA

Para assegurar o bom funcionamento do escoamento superficial, as guias e sarjetas das vias públicas serão limitadas por uma lâmina d'água de largura máxima de 1,67 metros e a sarjeta adotada será do tipo B, conforme Figura 7.1.

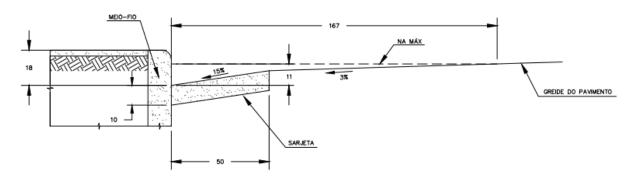


Figura 7.1 - Sarjeta tipo B

Sua vazão pode ser calculada pelo método de Izzard/Manning, conforme a equação 7.1 a seguir:

$$Q = 0.375 \frac{Z}{n} * y^{\frac{8}{3}} * \sqrt{i}$$

Equação 7.1 - Método de Izzard/Manning

Onde:

- Q= vazão (m³/s);
- Z= inverso da declividade transversal;
- I= declividade longitudinal (m/m);
- Y= profundidade junto à linha de fundo (m);
- n= coeficiente de rugosidade.

Considerando as características hidráulicas da sarjeta (Figura 7.2), a vazão pode ser calculada pela soma algébrica em cada uma das seções triangulares (seção da sarjeta mais seção da via, descontando sua interseção), conforme Figura 7.3.

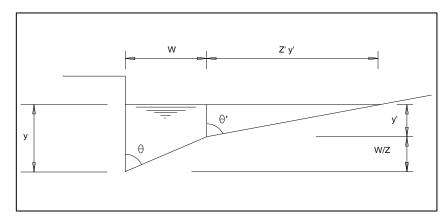


Figura 7.2 - Características hidráulicas da sarjeta

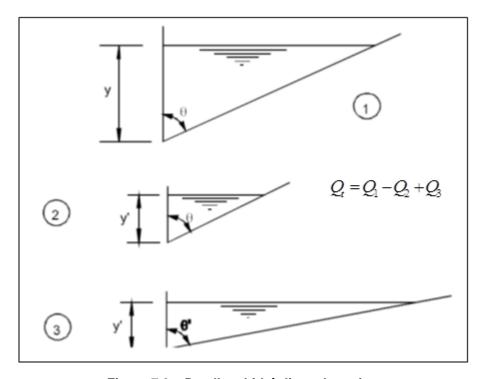


Figura 7.3 - Detalhes hidráulicos da sarjeta

A verificação da capacidade de escoamento da sarjeta foi realizada calculando a área máxima de escoamento que a sarjeta suporta, considerando-se uma faixa de alagamento máxima de 1,67 metros.

7.2. DIMENSIONAMENTO HIDRÁULICO DAS GALERIAS

O dimensionamento hidráulico é realizado junto à verificação das vias considerando simultaneamente os tópicos a seguir. A tabela de dimensionamento consta no Anexo II.

7.2.1. Posicionamento

As galerias deverão ser posicionadas no eixo das vias públicas, devendo ser previstas sempre que houver pelo menos uma das seguintes situações:

- Vazão contribuinte maior do que a capacidade de escoamento das vias;
- Velocidade de escoamento nas vias maior que 5,00 m/s;

Existência de pontos baixos, onde deverão ser implantadas bocas de lobo.

Após a locação do primeiro poço de visita com as respectivas bocas de lobo, são distribuídos outros poços de visitas conforme a necessidade de novos pontos de coleta do escoamento superficial, curvas em planta ou alterações de declividade ou diâmetro de tubulação. Cada captador tem um limite de capacidade de esgotamento de acordo com o tipo de boca de lobo utilizado.

7.2.2. Diâmetro Mínimo

Foi adotado como parâmetro de projeto o diâmetro mínimo de 0,60 m para galeria. Para ligações de ramais entre bocas de lobo e poços de visita adotou-se o diâmetro mínimo de 0,40 m a uma declividade mínima de 3%.

7.2.3. Cálculo da Vazão na Galeria

Na mesma etapa do projeto, para o dimensionamento, verifica-se a vazão para cada trecho entre PVs, através do somatório de vazões dos captadores (Exemplo: bocas de lobo contribuintes) e dos ramais de galeria à montante.

7.2.4. Velocidade de Escoamento

A velocidade do escoamento é um parâmetro fundamental na definição da galeria a ser projetada ou verificada hidraulicamente. Se, em função da declividade do conduto e de suas dimensões o fluxo na galeria apresentar velocidades baixas, poderá ocorrer assoreamento ao longo de sua extensão. Porém, se a declividade for acentuada e a velocidade ultrapassar o limite máximo recomendado é necessário à adequação da declividade ou o redimensionamento do conduto, de forma a evitar a ocorrência de fenômenos erosivos no interior da galeria, mantendo o tempo de vida útil de seus dispositivos.

Assim, os limites de velocidade d'água no interior das galerias serão os seguintes:

- Vmin. = 0.75 (m/s);
- Vmáx. = 6,00 (m/s) (ou velocidade de seção plena).

A velocidade pode ser calculada através da Equação 7.2.

$$v = \frac{R_h^{\frac{2}{3}} \cdot \sqrt{I}}{n}$$

Equação 7.2 - Cálculo da velocidade de escoamento

Onde:

- v Velocidade (m/s);
- I Declividade do conduto (m/m);
- Rh Raio hidráulico (m);
- n Coeficiente de rugosidade (adimensional).

O raio hidráulico (Rh) é obtido por meio da Equação 7.3:

$$R_h = \frac{A_m}{P_m}$$

Equação 7.3 - Cálculo do raio hidráulico

Em que:

- Am Área da seção molhada (m²);
- Pm Perímetro molhado (m).

O coeficiente de rugosidade é adotado conforme o material empregado no dispositivo, como determinado na Tabela 7.2.

Tabela 7.1 – Coeficiente de rugosidade para diferentes materiais

Material	Coeficiente (n)
Tubos em PVC	0,013
Galerias ou bueiros em concreto	0,013
Canais trapezoidais ou retangul	ares:
Em concreto	0,013
Alvenaria de Pedra Argamassada	0,025
Em gabiões	0,029
Em gabiões revestidos com concreto magro	0,018
Sem revestimento	0,030
Em concreto irregular	0,033
Revestido com grama em placas	0,030
Revestido com enrocamento bem construído	0,030
Concreto para sarjeta	0,014

7.2.5. Capacidade Máxima da Galeria

Para a obtenção do valor máximo suportado pela via e para o dimensionamento das galerias é empregada a equação da continuidade. Assim, a vazão máxima à seção plena nos condutos é obtida pela equação 7.4 a seguir.

$$Q = v \cdot S$$

Equação 7.4 - Determinação da vazão máxima

Em que:

- Q Vazão (m³/s);
- v Velocidade a seção plena, apresentada no Item 2.2.7: Velocidade de escoamento (m/s);
- S Área da seção (m²).

Portanto, como critério de dimensionamento, a capacidade máxima da galeria deve ser superior à vazão que se deseja transportar.

7.2.6. Recobrimento Mínimo da Galeria

Nos locais por onde a tubulação passa e que fazem parte do sistema viário, será considerado o recobrimento mínimo de 1,0 metro acima da geratriz superior do tubo, de forma a garantir a segurança estrutural das galerias.

7.2.7. Descarte

O descarte será realizado no Ribeirão das Mortes nas seguintes coordenadas: Latitude 22°12'36.21"S e longitude: 45°56'37.60"W.

8. PAVIMENTAÇÃO

O Projeto de Pavimentação foi desenvolvido com o objetivo de fornecer o detalhamento e o dimensionamento de uma estrutura que possa suportar economicamente as repetições de eixo padrão em condições de conforto e segurança para o usuário da via projetada.

O dimensionamento das espessuras das camadas do pavimento foi determinado em conformidade com as condições gerais indicadas pelo Manual de Pavimentação do DNIT.

8.1. MÉTODO UTILIZADO

No dimensionamento do pavimento flexível, foi utilizado o método do DNER, edição 1996, do Engº Murilo Lopes Souza, baseado nas características de resistência dos solos de fundação, dos materiais de constituição do pavimento e do volume e do tipo do tráfego solicitante.

Segundo tal procedimento, determina-se a espessura total necessária para o pavimento, em função do material granular, como os dados geotécnicos e das características do tráfego solicitante, este último parâmetro também é utilizado para a determinação da espessura mínima do revestimento betuminoso.

Um projeto de pavimento flexível deve atender limitações de tensões que possam provocar ruptura por cisalhamento, deformações permanentes e deformações recuperáveis ou elásticas.

8.2. PARÂMETROS DO DIMENSIONAMENTO

Na aplicação do método citado, é necessária a obtenção dos seguintes parâmetros:

8.2.1. Número "N"

O pavimento é dimensionado considerando a vida útil de projeto de 10 anos. E o número "N" utilizado para o dimensionamento do pavimento é estabelecido de acordo com a função predominante da via, conforme a Tabela 8.1 apresentado abaixo:

Função	Tráfego Vida de		Volume inicial (faixa mais carregada)		Equiva-	N	N
predominante	previsto	projeto	Veículo Leve	Caminhão/ Ônibus	lente/ Veículo	N	caracte- rístico
Via Local	LEVE	10	100 a 400	4 a 20	1,50	2,7x10 ⁴ a 1,4x10 ⁵	10 ⁵
Via Local e Coletora	MÉDIO	10	401 a 1.500	21 a 100	1,50	1,4x10 ⁵ a 6,8x10 ⁵	5x10 ⁵
Vias Coletoras e Estruturais	MEIO PESADO	10	1.501 a 5.000	101 a 300	2,30	1,4x10 ⁶ a 3,1x10 ⁶	2x10 ⁶

Tabela 8.1 - Tráfego por Classificação Funcional da Via

	PESADO	12	5.001 a 10.000	301 a 1.000	5,90	1,0x10 ⁷ a 3,3x10 ⁷	2x10 ⁷
	MUITO PESADO	12	> 10.000	1,001 a 2.000	5,90	3,3x10 ⁷ a 6,7x10 ⁷	5x10 ⁷
Faixa Exclusiva de Ônibus	VOLUME MÉDIO	12		< 500		3x10 ⁶	10 ⁷
	VOLUME PESADO	12		> 500		5x10 ⁷	5x10 ⁷

Fonte: Prefeitura de São Paulo, 2004.

A partir da projeção futura de utilização da via após a pavimentação, foi considerado o tráfego de Vias Coletoras e Estruturais (MEIO PESADO). O valor obtido para o período e especificações de projeto citados acima foi de $N = 2 \times 10^6$.

8.2.2. Índice de Suporte do Subleito (CBR)

Para o dimensionamento do pavimento da Avenida Noroeste, foi obtido o valor de CBR de 11,90%, através dos ensaios geotécnicos (ANEXO I), realizado pela empresa DELFT.

8.3. DETERMINAÇÃO DAS ESPESSURAS DAS CAMADAS DOS PAVIMENTOS

A fixação da espessura mínima a adotar para os revestimentos betuminosos é um dos pontos ainda em aberto na engenharia rodoviária, quer se trate de proteger a camada de base dos esforços impostos pelo tráfego, quer se trate de evitar a ruptura do próprio revestimento por esforços repetidos de tração na flexão.

O método do DNIT recomenda as espessuras mínimas apresentadas na Tabela 8.2 que se segue.

NEspessura mínima de revestimento betuminoso $N \le 10^6$ Tratamentos superficiais betuminosos $10^6 < N \le 5x10^6$ Revestimentos Betuminosos com 5,0 cm de espessura $5x10^6 < N \le 10^7$ Concreto betuminoso com 7,5 cm de espessura $10^7 < N \le 5x10^7$ Concreto betuminoso com 10,0 cm de espessura $N > 5x10^7$ Concreto betuminoso com 12,5 cm de espessura

Tabela 8.2 - Tipo de revestimento em função de tráfego

Fonte: DNIT, 2006.

As espessuras mínimas do revestimento são obtidas em função do número "N". Conforme apresentado anteriormente, para o número "N" igual a 2 x 10⁶, como aponta a estimativa de tráfego, portanto será utilizado uma camada de Revestimento betuminoso com 5,0 cm de espessura.

A determinação das espessuras das demais camadas constituintes do pavimento se faz pelas seguintes inequações:

$$R \times KR + B \times KB \ge h20 (1)$$

$$R \times KR + B \times KB + h20 \times Ks \ge Hn$$
 (2)

$$R \times KR + B \times KB + h20 \times Ks + hn \times KREF \ge Hm$$
 (3)

Onde:

- R = espessura do revestimento;
- B = espessura da camada de base;
- H20 = espessura sobre a sub-base;
- h20 = espessura da sub-base;
- Hn = espessura sobre o reforço do subleito;
- hn = espessura do reforço do subleito;
- Hm = espessura total do pavimento;
- KR, KB, KS, KREF = coeficientes de equivalência estrutural.

As espessuras Hm, Hn, e H20 são obtidas através do ábaco apresentado na Figura 8.1, onde a espessura é função do número "N" e do valor do CBR do subleito, da sub-base ou do reforço do subleito.

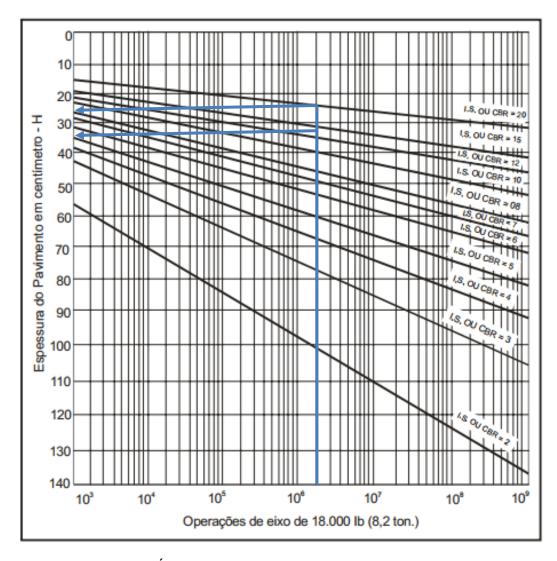


Figura 8.1 – Ábaco de determinação da espessura do pavimento Fonte: DNIT, 2006.

O método de dimensionamento do DNIT faz algumas recomendações quanto aos coeficientes de equivalência estrutural dos materiais e quanto às espessuras mínimas de revestimento betuminoso.

Os coeficientes estruturais dos materiais utilizáveis nas camadas do pavimento são apresentados na Tabela 8.3 que se segue.

Tabela 8.3 - Coeficientes k

Componentes do Pavimento	Coeficiente k
Base ou revestimento do concreto betuminoso	2
Base ou revestimento pré-misturado a quente, de graduação densa	1,7
Base ou revestimento pré-misturado a frio, de graduação densa	1,4
Base ou revestimento betuminoso por penetração	1,2
Camadas granulares	1

Componentes do Pavimento	Coeficiente k
Solo cimento com resistência a compressão a 7 dias superior a 45 kg/cm²	1,7
Idem, com resistência a compressão a 7 dias entre 45 e 28 kg/cm²	1,4
Idem, com resistência a compressão a dias entre 28 e 21 kg/cm²	1,2
Bases de Solo-Cal	1,2

Fonte: DNIT, 2006.

Para determinação das espessuras do pavimento das vias serão adotados os seguintes coeficientes:

Revestimento betuminoso: K = 2,00;

• Base granular: K = 1,0;

• Sub-base granular: K = 1,0;

CBR do subleito = 11,90%.

Assim, com a resolução das inequações e atentando-se para as espessuras mínimas das camadas indicadas pelas instruções de execução em vigor, têm-se as espessuras das camadas do pavimento dimensionado:

Revestimento: 5,0 cm de Concreto Betuminoso Usinado a Quente – CBUQ.

Base: 15 cm de Solo-Brita 85%/15% (CBR ≥ 80%, Expansão ≤ 0,5%, Compactação a 100% Proctor Intermediário).

Sub-Base: 15 cm de Solo-Brita 50%/50% (CBR ≥ 30%, Expansão ≤ 1,0%, Compactação a 100% Proctor Intermediário).

Devido as características diagnosticadas no trecho compreendido entre as estacas 27 e 37+17,933, onde o solo é úmido, foi adotada uma camada de rachão como reforço do subleito neste trecho, visando amenizar a percolação de água através do pavimento dimensionado.

Reforço Subleito: 80cm de Rachão (CBR ≥ 12%, Expansão ≤ 1,0%, Compactação a 100% Proctor Intermediário).

A seguir apresentam-se as camadas da Seção Transversal Tipo dos pavimentos projetados:

Figura 8.2 - Pavimento Flexível Tipo 1

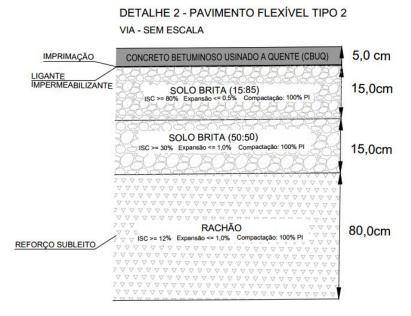


Figura 8.3 – Pavimento Flexível Tipo 2 (com Reforço do Subleito)

8.3.1. Dimensionamento do Pavimento das Calçadas

Por se tratar de vias exclusivas para pedestres, o tráfego é considerado leve, assim adotouse o pavimento com resistência característica à compressão simples (fck), medida aos 28 dias de idade, igual ou superior a 35 MPa e com as dimensões mínimas padronizadas pela NBR 9.781 de 2013 – Peças de Concreto para Pavimentação.

A Figura 8.4 que se segue apresenta o croqui do pavimento adotado:

Figura 8.4 - Pavimento Intertravado Calçada de 6 cm

8.3.2. Dimensionamento do Pavimento das Ciclovias

Por se tratar de vias exclusivas para ciclistas o tráfego solicitante é considerado leve, podendo ser executada camada de tratamento superficial simples. Porém como a área de ciclovia é pequena torna-se economicamente inviável a mobilização de insumos e maquinário específico para sua execução, devendo este pavimento ser executado em CBUQ, com espessura de 3,0 cm, assentado sobre base de brita apiloada.

A Figura 8.5 que se segue apresenta o croqui do pavimento adotado:

DETALHE 4 - PAVIMENTO FLEXÍVEL CICLOVIA - SEM ESCALA

Figura 8.5 - Pavimento Flexível Ciclovia

8.3.3. Especificações de Serviços

Para a execução das camadas, deve-se seguir atentamente as seguintes especificações de serviço:

- Pavimento Flexível: Mistura Asfálticas a Quente DNER ES 031/06;
- Imprimação Impermeabilizante DNIT ES 144/14;
- Pintura de Ligação Impermeabilizante DNIT ES 145/12;
- Brita Graduada Simples ET-DE-P00/008;
- Solo Brita DNIT ES 303/97;
- Preparo do Subleito DNIT ES 299/97;
- Reforço do Subleito DNIT ES 138/10;
- Execução de Pavimento Intertravado com peças de concreto ABNT NBR 15.953.

Obs.: A Especificação de Serviço ET-DE-P00/008 indicada para a execução da camada de BGS pertence ao Departamento de Estradas de Rodagem de São Paulo. Esta especificação foi escolhida devido ao fato de que a revisão da especificação de serviço desse material no DNIT ainda não está aprovada.

9. PROJETO DE PAISAGISMO

O projeto de paisagismo em um empreendimento é de relevante importância, visto que as espécies arbóreas implantadas no mesmo possuem um grande valor social e ambiental. O plantio de espécies arbóreas proporciona um maior conforto ambiental para os ocupantes do empreendimento e demais indivíduos da região, visto que através deste é possível efetuar a manutenção da temperatura média local, qualidade do ar, aspecto visual, porte, dimensões das vias, entre outros efeitos.

O projeto em questão buscou embasamento em artigos técnicos científicos e cartilhas as quais possam orientar ao desenvolvimento do mesmo, sendo entre eles o Manual de Arborização Urbana do Estado de São Paulo e Manual de Arborização da CEMIG.

9.1. CRITÉRIO DE SELEÇÃO DAS ESPÉCIES

A fim de se manter uma maior diversificação das espécies, com intenção de diminuir a perda arbórea devido a proliferação de pragas ou doenças, adotaram-se alguns parâmetros sugeridos pelo Manual de Arborização da CEMIG (Companhia Energética de Minas Gerais), tais são:

- 10% (dez por cento) da mesma espécie;
- 20% (vinte por cento) do mesmo gênero;
- 30% (trinta por cento) da mesma família.

Para uma correta elaboração de tal projeto, alguns outros critérios foram adotados, assim como:

- Escolha de espécies nativas, as quais o bioma local seja adequado para as mesmas;
- Escolha de espécies exóticas que possam se desenvolver plenamente na região;
- Escolha de espécies com porte adequado para o sistema viário projetado;
- Espécies com potencial ornamental e funcional;
- Disponibilidade de tais espécies em viveiros próximos ao empreendimento.
- Distribuição intercalada das espécies.

Por orientação da CEMIG (Companhia Energética de Minas Gerais), quando o eixo da rua estiver no sentido Norte-Sul, deve-se locar a rede no lado Oeste, e quando o eixo da rua estiver no sentido Leste-Oeste, a rede será locado no lado Norte, deixando assim, o leste e sul destinado ao plantio das mudas.

9.2. ESPÉCIES ESCOLHIDAS

A escolha das espécies do sistema viário se deu de forma a indicar as espécies que melhor supram as necessidades provenientes do sistema viário, como sombreamento, adequação com os demais projetos. Assim, a Tabela 9.1 a seguir apresenta as espécies escolhidas para o plantio:

ESPÉCIES	FAMÍLIA	GÊNERO	NOME CIENTÍFICO	QUANT.
PATA DE VACA	Fabaceae	Bauhinia	Bauhinia blakeana	14
QUARESMEIRA	Melastomataceae	Tibouchina	Tibouchina granulosa	14
MANACÁ DA SERRA	Melastomataceae	Tibouchina	Tibouchina mutabilis	14
RESEDÁ	Lythraceae	Lagerstroemia	Lagerstroemia indica	14
MAGNÓLIA	Magnoliaceae	Magnólia	Magnólia spp	14
JACARANDÁ MIMOSO	Bignoniaceae	Jacarandá	Jacarandá mimosaefolia	14
FLAMBOYANTZINHO	Fabaceae	Caesalpinia	Caesalpinia pulcherrima	14
NOIVINHA	Tyrannidae	Xolmis	Euphorbia leucocephala	14
IPÊ AMARELO	Bignoniaceae	Handroanthus	Handroanthus albus	15
JASMIM MANGA	Apocynaceae	Plumeria	Plumeria rubra	14
JACARANDÁ-DE-MINAS	Bignoniaceae	Jacarandá	Jacaranda cuspidifolia	14
IPÊ ROSA ANÃO	Bignoniaceae	Tabebuia	Tabebuia avellanedae	14
FALSO BARBATIMÃO	Fabaceae	Cassia	Cassia leptophylla Vogel	14

Tabela 9.1 - Espécies escolhidas para plantio

Para a vegetação rasteira dos canteiros laterais foi escolhida a grama amendoim, uma forragem com pequenas flores amarelas. Este tipo de gramínea não necessita de podas periódicas como os outros tipos de grama e tem crescimento muito rápido: por volta de três meses. Já para o canteiro central, foi escolhida a grama São Carlos.

9.3. ESPECIFICAÇÕES DE PLANTIO

9.3.1. Fornecimento

- A vegetação deve ser sadia e estar em pleno desenvolvimento, não devendo apresentar formas raquíticas e pragas.
- As mudas devem ser plantadas o mais rapidamente possível. A permanência das mudas no local da obra não poderá exceder um período superior a 48h.
- Todas as mudas deverão ser fornecidas com embalagens onde o sistema radicular esteja consolidado no substrato.
- A altura mínima e o DAP das árvores (diâmetro à altura do peito) deverão ser de, no mínimo 1,50 e 0,20 m, respectivamente.

9.3.2. Preparo Geral do Solo

- O terreno deverá ser limpo em sua totalidade; devendo ser retirados os restos de construção, lixo, pedras e resíduos vegetais.
- Mapear todas as interferências subterrâneas de instalações elétricas, hidráulicas, etc, a fim de evitar danificações durante a execução do plantio.
- A camada superficial das áreas ajardinadas deverá ser constituída por terra de boa qualidade, com espessura mínima de 0,15m.
- Revolver a terra a uma profundidade mínima de 0,25m, e incorporar calcário dolomítico na quantidade de 120g/m2, para atingir pH=6,5 e matéria orgânica na proporção de 500g/m2.
- Aguardar no mínimo 10 dias, antes de iniciar o plantio, mantendo o solo úmido. Antes de o plantio deixar a terra regularizada em nível.

9.3.3. Plantio

- A cova das árvores e palmeiras deverá ter, quando possível, 0,80 x 0,80 x 0,80m.
- Adicionar adubo na seguinte proporção: 1kg de adubo orgânico por cova, 300g de adubo mineral npk-10-10-10 por cova.
- Colocar a muda na cova nivelando o colo com a parte superior da terra. Seguir as distâncias das mudas e especificações do projeto.
- As mudas de árvores e palmeiras deverão ser protegidas com a utilização de tutores.
- Irrigar as espécies plantadas de acordo com a necessidade, mantendo o solo levemente úmido.

9.3.4. Plantio das Gramíneas – Taludes

- Os interstícios das placas de grama deverão ser preenchidos com a mistura de terra na seguinte proporção por m3 de terra: 1/4 matéria orgânica e 3/4 de terra tipo solo.
- Após o plantio, compactar as placas levemente com soquete, de forma a pressionálas contra a terra, sem haver compactação excessiva, e cobrir o gramado com solo leve ou areia grossa.
- Nota: irrigar, no máximo 24h após o plantio, com quantidade de água e frequência necessárias a garantir o correto desenvolvimento das espécies plantadas.
- Toda a grama plantada nas áreas de talude deverá ser estaqueada nas 4 extremidades de cada tapete.

9.3.5. Plantio das Gramíneas – Canteiro e Faixa Verde

- A irrigação inicial deve ser abundante e diária até o surgimento dos primeiros brotos.
 Depois, a periodicidade será variável de 1 a 4 vezes por semana, de acordo com a temperatura e umidade do ar.
- Limpar periodicamente todas as áreas, removendo o lixo dos canteiros, ervas daninhas e pragas.
- Todas as árvores deverão ser limpas periodicamente, visando a redução do número de galhos finos ou ramos ladrões.
- Irrigar o gramado abundantemente após a cobertura.

10. PROJETO DE SINALIZAÇÃO

O Projeto de Sinalização foi elaborado em consonância com os princípios da Engenharia de Tráfego e em observância às determinações do Código Trânsito Brasileiro – CTB.

10.1. SINALIZAÇÃO HORIZONTAL

De acordo com o Manual de Sinalização do Denatran, a sinalização horizontal tem a finalidade de transmitir e orientar os usuários sobre as condições de utilização adequada da via, compreendendo as proibições, restrições e informações que lhes permitam adotar comportamento adequado, de forma a aumentar a segurança e ordenar os fluxos de tráfego.

10.1.1. Linha de Retenção (LRE)

A Linha de Retenção (LRE) tem a função de indicar o limite de parada do veículo. Tem cor branca e largura de 30 cm no projeto. É utilizada em todas as faixas de travessia de pedestres a uma distância mínima de 1,60 m do início desta. A LRE também pode ser utilizada em locais onde houver necessidade por questões de segurança.

A Figura 10.1 apresenta o posicionamento da LRE em relação às faixas de travessia de pedestres.

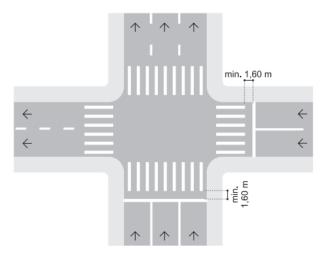


Figura 10.1 – Posicionamento de Linha de Retenção (LRE)

10.1.2. Linhas de Separação de Fluxo de Sentidos Opostos

10.1.2.1. Linha Simples Contínua (LFO-1)

A Linha Simples Contínua (LFO-1), apresentada na Figura 10.2, ordena fluxos de sentido oposto na situação em que são proibidas a ultrapassagem e a mudança de faixa, por comprometer a segurança viária. Sua largura de linha varia de acordo com a velocidade regulamentada na via. Para a Avenida Noroeste, onde a velocidade limite é de 50km/h, a largura estabelecida será de 0,10m.

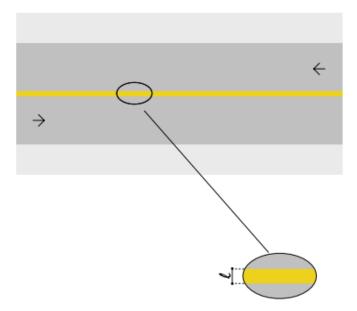


Figura 10.2 – Exemplo de Faixa LFO-1 Fonte: Denatran, 2007

10.1.3. Linhas de Separação de Fluxo de Mesmo Sentido

10.1.3.1. Linha Simples Contínua (LMS-1)

A Linha Simples Contínua (LMS-1), exposta na Figura 10.3, ordena fluxos de mesmo sentido na situação em que a ultrapassagem e a mudança de faixa são proibidas. Sua largura (I) varia de acordo com a velocidade regulamentada na via. Para a Avenida Noroeste, onde a velocidade limite é de 50 km/h, a largura estabelecida será de 0,10 m.

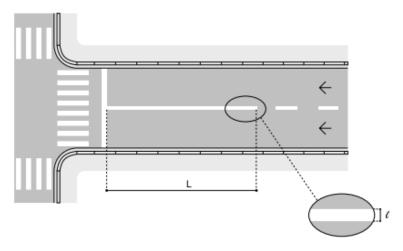


Figura 10.3 – Linha Simples Contínua (LMS-1)

Fonte: Denatran, 2007

10.1.3.2. Linha Simples Seccionada (LMS-2)

A Linha Simples Seccionada (LMS-2), exposta na **Erro! Fonte de referência não ncontrada.**0.4, ordena fluxos de mesmo sentido na situação em que a ultrapassagem e a mudança de faixa são permitidas. Sua largura de linha varia de acordo com a velocidade

regulamentada na via. Para a Avenida Noroeste, onde a velocidade limite é de 50 km/h, a largura estabelecida será de 0,10 m.

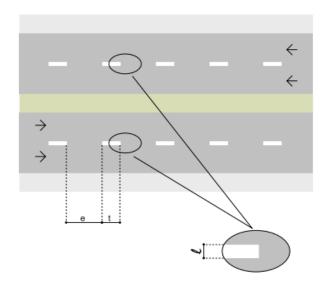


Figura 10.4 - Linha Simples Seccionada (LMS-2)

Fonte: Denatran, 2007

10.1.4. Linha de Bordo (LBO)

A Linha de Bordo (LBO), exposta na Figura 10.5, delimita a parte da via destinada ao deslocamento de veículos, estabelecendo seus limites laterais. Sua largura de linha varia de acordo com a velocidade regulamentada na via. Para a Avenida Noroeste, onde a velocidade limite é de 50 km/h, a largura estabelecida será de 0,10 m. Seu afastamento em relação a guia varia de acordo com a situação, quando existir barreira física, esta deverá distar no mínimo 0,30 m de seu limite, do contrário, o distanciamento usual será de 0,10 m em relação ao limite da pista após a sarjeta.

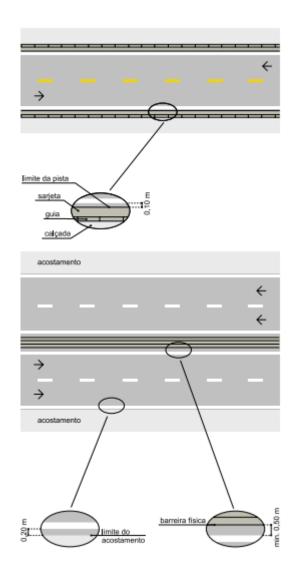


Figura 10.5 - Linha de Bordo (LBO)

Fonte: Denatran, 2007

10.1.5. Linha de continuidade (LCO)

A linha de continuidade (LCO) tem como finalidade estender as marcações visuais por mudança no alinhamento, aumentando o conforto e segurança dos motoristas. No projeto da avenida Noroeste a faixa possuirá cor branca, comprimento de 1,00 metro, espaçamento de 1,00 metro e largura de 10 centímetros.

10.1.6. Zebrado de Preenchimento da Área de Pavimento Não Utilizável (ZPA)

O ZPA é responsável pelo destaque da área interna às linhas de canalização, reforça a ideia de área não utilizável e direciona os condutores para o correto posicionamento na via. Conforme apresentado na Figura 10.6, suas linhas são inclinadas 45º em relação ao tráfego,

36

sua largura de linha interna (A) será de 0,30 m, enquanto a distância entre linhas (B) será de 1,10 metros.

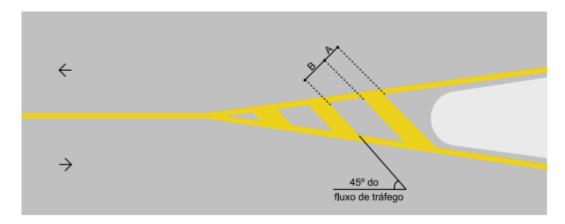


Figura 10.6 - Exemplo de ZPA

Fonte: Denatran, 2007

10.1.7. Faixa de Travessia de Pedestre (FTP)

A Faixa de travessias de Pedestres tem a função de delimitar a área de travessia segura para os pedestres e regulamenta a prioridade de passagem dos mesmos em relação aos veículos. Para o projeto de sinalização da Avenida Noroeste, foi utilizada a FTP do tipo Zebrada (FTP 1), com largura de 30 cm e espaçamento entre elas de 30 cm, conforme exibido na Figura 10.7. A extensão mínima das linhas é de 3,00 m.

As FTPs estão posicionadas, no projeto, nos locais que ofereçam maior segurança para a travessia de pedestres.

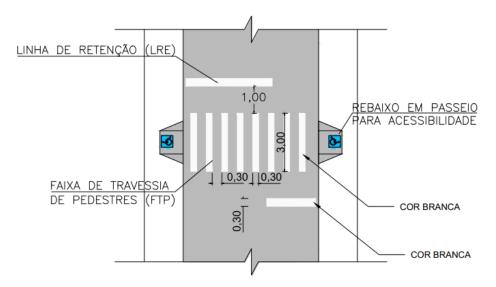


Figura 10.7 - Faixa de travessia de pedestre do projeto

Fonte: Denatran, 2007.

10.1.8. Legenda "PARE"

Colocado em todos os pontos de parada, mesmo aqueles que poderiam dispensar a sinalização pelo baixo fluxo de tráfego. Nos locais indispensáveis é acompanhada de sinalização vertical.

O sinal de pare para cruzamento rodoviários deverá apresentar texto em tamanho 2,40 m. A Figura 10.8 representa uma seção tipo com a legenda de "PARE".

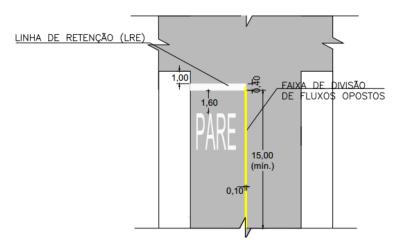


Figura 10.8 - Legenda "PARE"

Fonte: Denatran, 2007.

10.1.9. Símbolo "Dê a Preferência"

Utilizado para reforçar a sinalização vertical R-2 – "Dê a preferência", que será especificada em seção posterior. O detalhamento da pintura é dado na Figura 10.9.

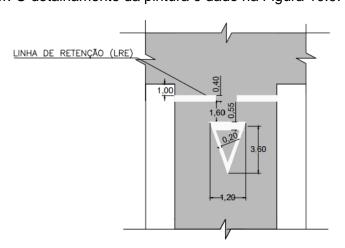


Figura 10.9 – Símbolo "Dê a preferência"

Fonte: Denatran, 2007.

Setas indicativas de posicionamento na pista para a execução de movimentos (PEM)

As setas e demais demarcações apresentadas no presente projeto devem seguir as dimensões mínimas propostas no "Manual de Sinalização Horizontal do CONTRAN de 2007".

10.2. SINALIZAÇÃO VERTICAL

A sinalização vertical tem a função de indicar, regulamentar e advertir sobre as movimentações de tráfego através de dispositivos verticais alocadas nas laterais das pistas.

São implantadas no lado direito da via, salvo casos em que é necessário a colocação ao lado esquerdo, no sentido do fluxo de tráfego que devem regulamentar. Devem ser inseridas na posição vertical, fazendo um ângulo de 93º a 95º em relação ao sentido do fluxo de tráfego, voltadas para o lado externo da via. Esta inclinação tem por objetivos assegurar boa visibilidade e leitura dos sinais, evitando o reflexo especular que pode ocorrer com a incidência de faróis de veículos ou de raios solares sobre a placa. O afastamento lateral das placas, medido entre a borda lateral da mesma e da pista, deve ser, no mínimo, de 30 cm em trechos retos e 40 cm em trechos curvos.

Os itens a seguir apresentam os dispositivos de sinalização vertical que estão sendo utilizados no projeto referente à Avenida Noroeste.

O detalhamento com as medidas principais estão dispostos em projetos.

10.2.1. Parada Obrigatória (R-1)

A placa de parada obrigatória (R-1), como intui a nomenclatura, regulamenta a parada dos veículos antes de entrar ou cruzar a pista.

Os lados do octógono que constitui a placa de parada obrigatória devem possuir largura mínima de 30 cm. Para o presente projeto utilizou-se da dimensão de 35 centímetros, seguindo a orientação do manual de sinalização vertical do Denatran. A Figura 10.10 apresenta detalhamento dessas placas.

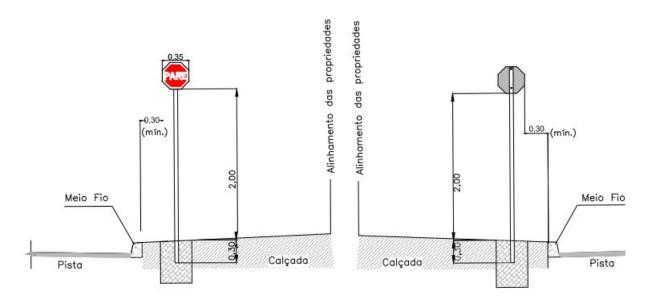


Figura 10.10 - Placas de parada obrigatória

Fonte: Denatran, 2007.

10.2.2. Regulamentação de Velocidade (R19)

A Placa de regulamentação de velocidade (R-19) tem como função determinar a velocidade máxima permitida na via.

10.2.3. Advertência de Passagem Sinalizada de Pedestre (A-32B)

O sinal adverte o condutor do veículo da existência, adiante, de local sinalizado com faixa de travessia de pedestres.

Na faixa elevada deve ser adicionada a indicação de texto para faixa elevada, auxiliando os motoristas a reduzir a velocidade.

10.2.1. Dê a Preferência (R-2)

Utilizada principalmente para acesso a rotatória, a placa R-2 tem a função de indicar a preferência de movimento no mesmo sentido ou cruzamento.

10.2.1. Sentidos de Circulação (R-33, R24-a e R24-b)

As placas de sentido de circulação têm como finalidade regulamentar a direção da via. A placa R-33 tem como função indicar o movimento da rotatória, a R24-a e R24-b indicam a movimentação obrigatória da via.

40

10.3. REBAIXOS DE ACESSIBILIDADE

Nos locais onde estão presentes as faixas de pedestre devem ser construídos de ambos os lados da faixa, um rebaixo na calçada com rampas laterais conforme os detalhamentos representados na Figura 24.

Deve ser garantido a inclinação mínima de 8,33% na rampa principal.

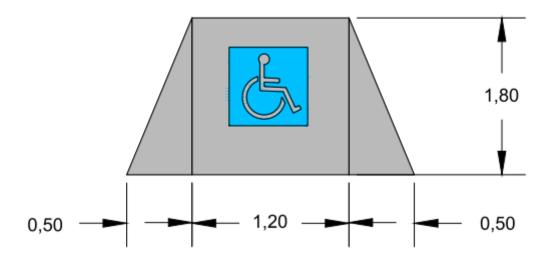


Figura 24: Detalhamento da rampa de acessibilidade.

REFERÊNCIAS

ABNT - Associação Brasileira de Normas Técnicas. NBR 5681 - NB 501. Controle tecnológico da execução de aterros em obras de edificações. Rio de Janeiro, 1980.

ABNT - Associação Brasileira de Normas Técnicas. NBR 7250. Identificação e Descrição de Amostras de Solos Obtidas em Sondagens de Simples Reconhecimento de Solos. Rio de Janeiro, 1982.

BH TRANS. Roteiro para Elaboração de Relatório de Impacto na Circulação - RIC. Belo Horizonte: Prefeitura Municipal de Belo Horizonte, 2007. 19 p.

BRASIL. Departamento Nacional de Infraestrutura de Transportes. Diretoria de Planejamento e Pesquisa. Coordenação Geral de Estudos e Pesquisa. Instituto de Pesquisas Rodoviárias. Manual de hidrologia básica para estruturas de drenagem. 2 ed. Rio de Janeiro, 2005. 133 p.

CEPAGRI. Disponível em http://www.cpa.unicamp.br/outras-informacoes/clima_muni_569.html

DENATRAN – DEPARTAMENTO NACIONAL DE TRÂNSITO. Manual de Sinalização. Volumes I, II, III e IV. Brasília-DF, 2007.

DNIT – Departamento Nacional de Infraestrutura de Transportes. Manual de Contagem de Tráfego. Publicação IPR-719. Ministério dos Transportes. 2006.

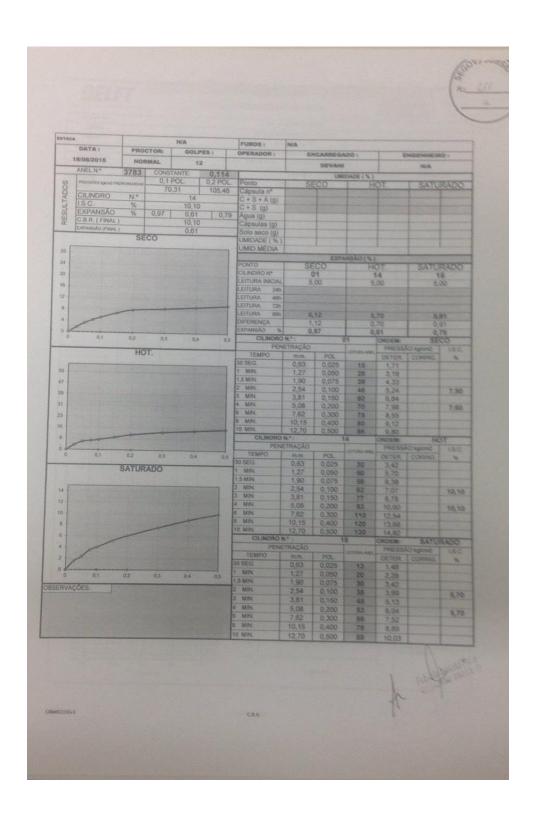
DYER, K.R. Estuaries - A Physical Introduction. 2 ed. Chichester, England, John Wiley & Sons. 1997.

GOOGLE EARTH – Programa Google Earth. 2017.

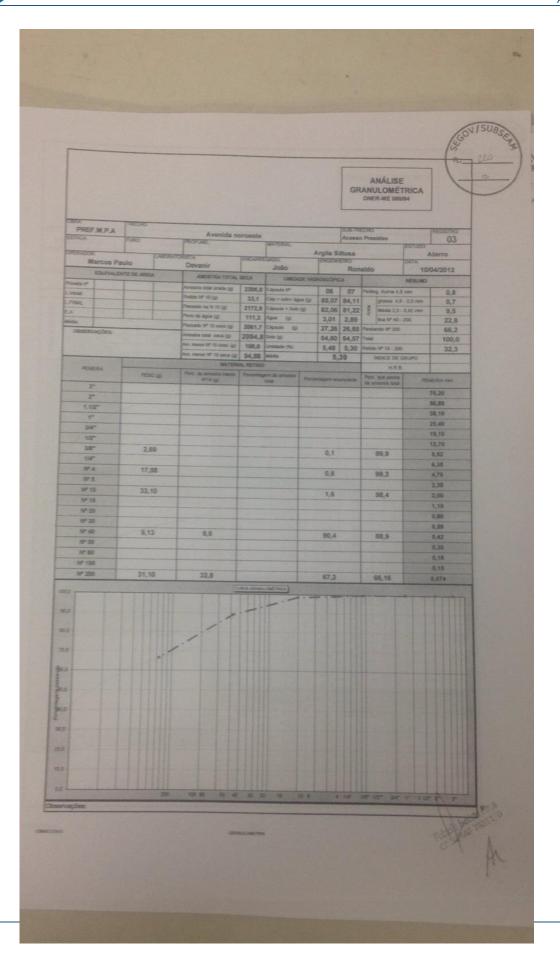
HIDROWEB - ANA - Sistema de Informações Hidrológicas. Disponível em http://hidroweb.ana.gov.br/.

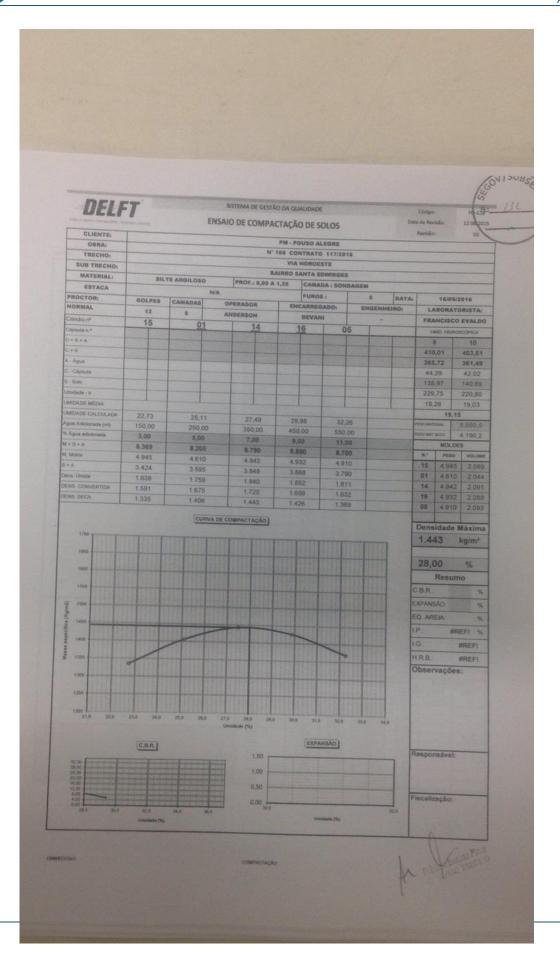
IBGE (Instituto Brasileiro de Geografia e Estatística). Disponível em: http://www.ibge.gov.br/cidadesat/topwindow.htm?1.

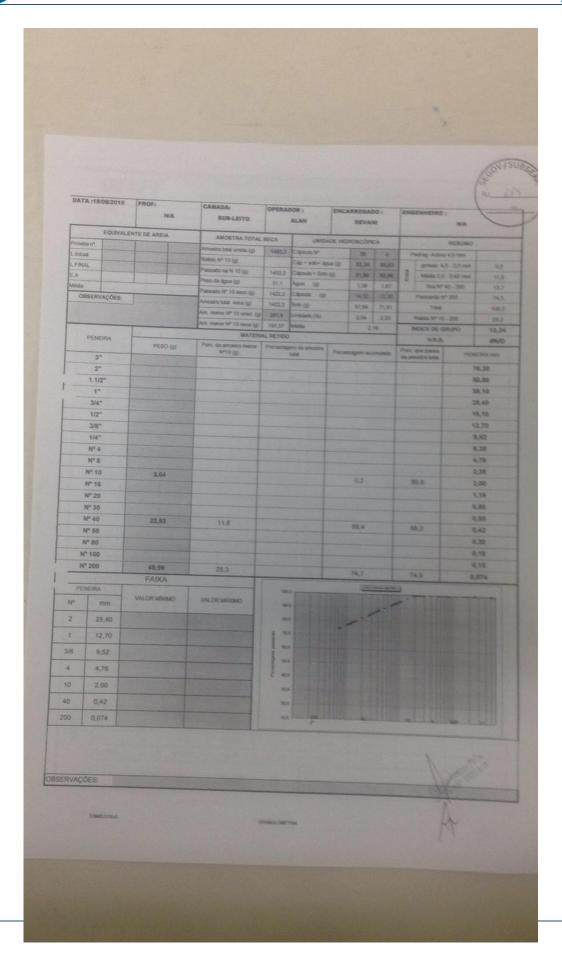
Mapa de solos do Estado de Minas Gerais: legenda expandida /Universidade Federal de Viçosa; Fundação Centro Tecnológico de Minas Gerais; Universidade Federal de Lavras; Fundação Estadual do Meio Ambiente. Belo Horizonte: Fundação Estadual do Meio Ambiente, 2010. 49p.

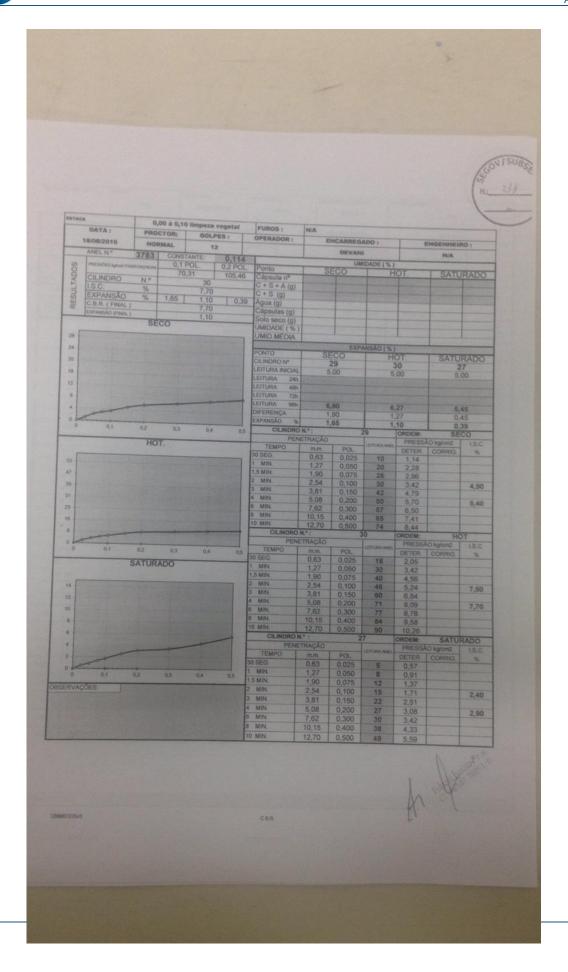

PORTUGAL, L. S. GOLDNER, L. G., (2003). Estudo de Polos Geradores de Tráfego e de seus Impactos nos Sistemas Viários de Transportes. Editora Edgard Blücher.

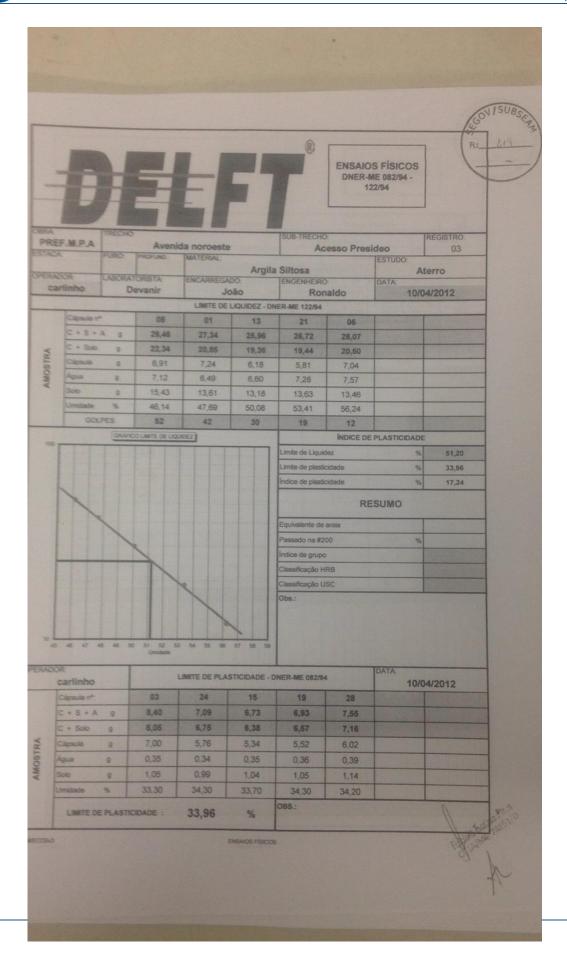
RIBEIRO, André et al. Mapa geológico: folha Pouso Alegre. 2011.

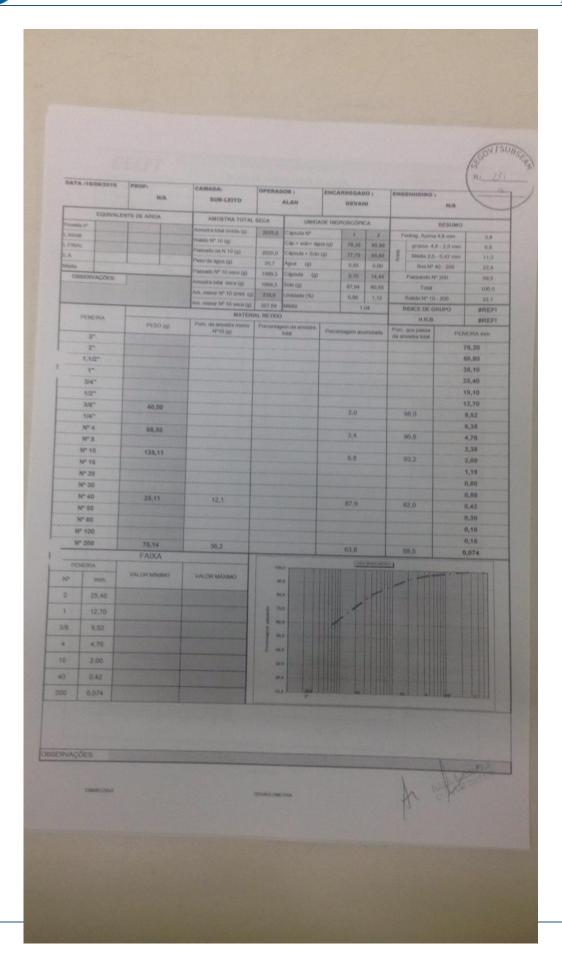

SANTOS, L. C. C. Estimativa de vazões máximas de projeto por métodos determinísticos e probabilísticos. Dissertação (Mestrado em Engenharia Ambiental) – Universidade Federal do Espírito Santo, Vitória, 2010. 173 p.

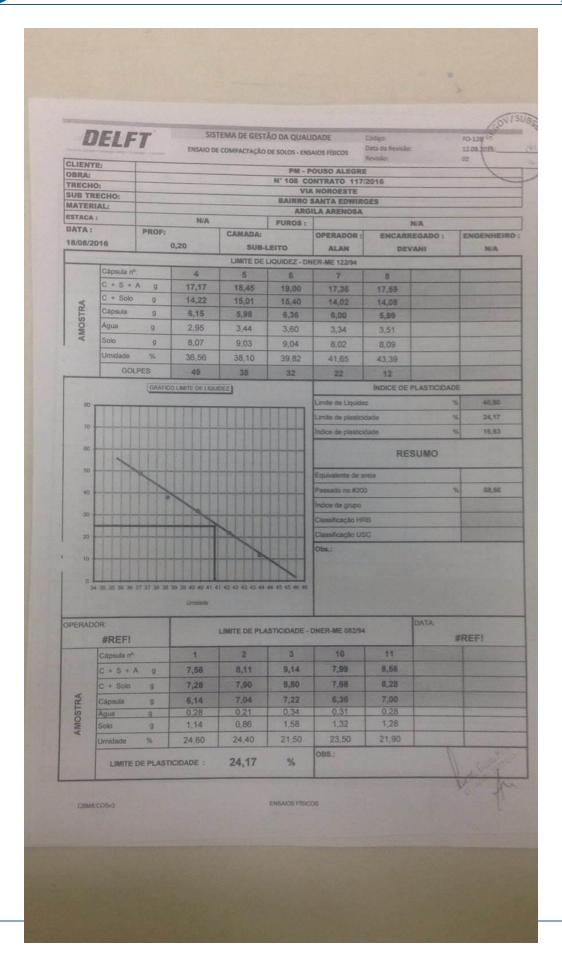

Anexo I. ENSAIOS GEOTÉCNICOS - DELFT

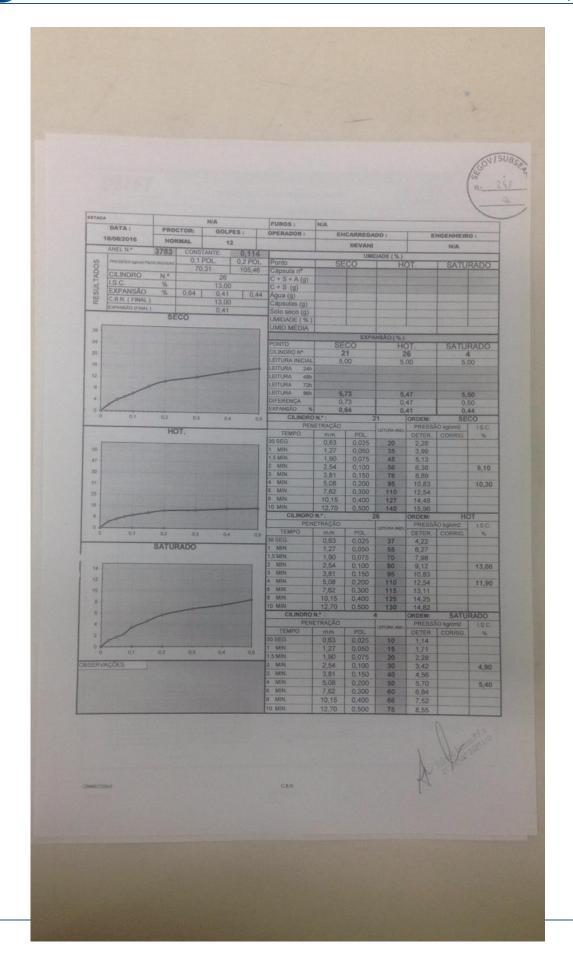


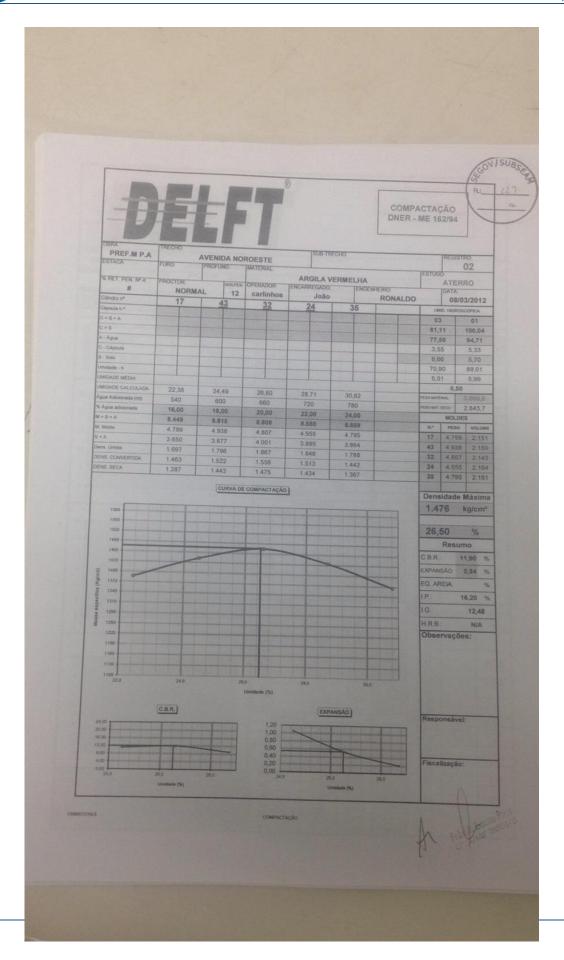


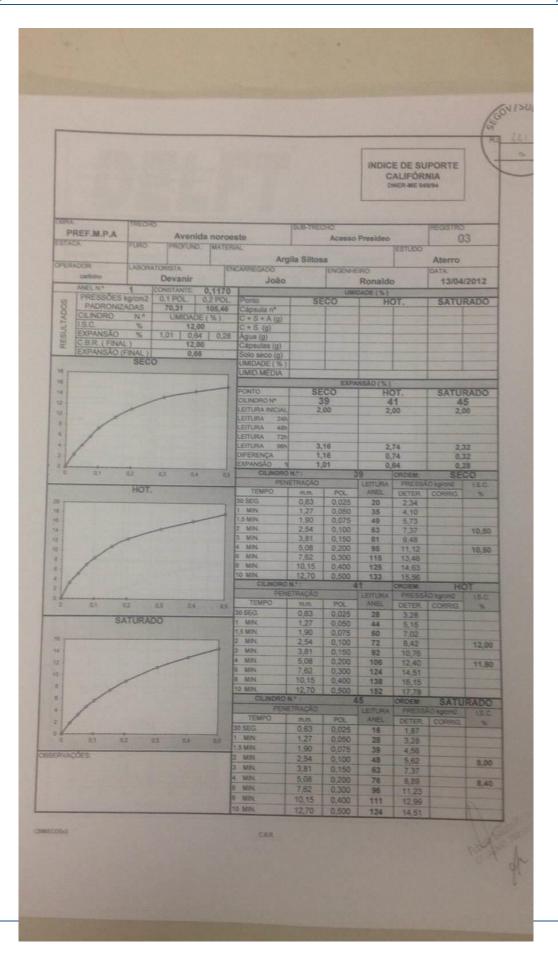


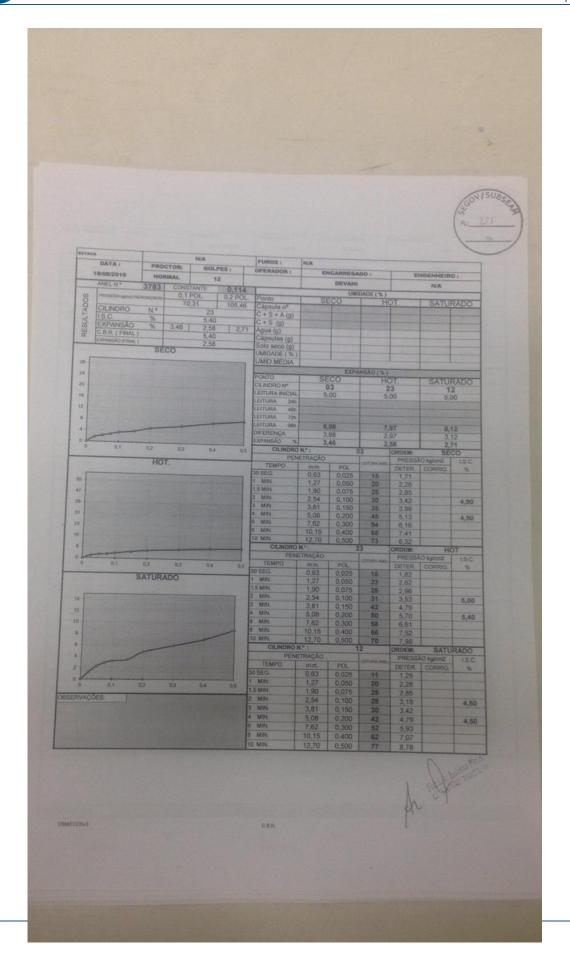




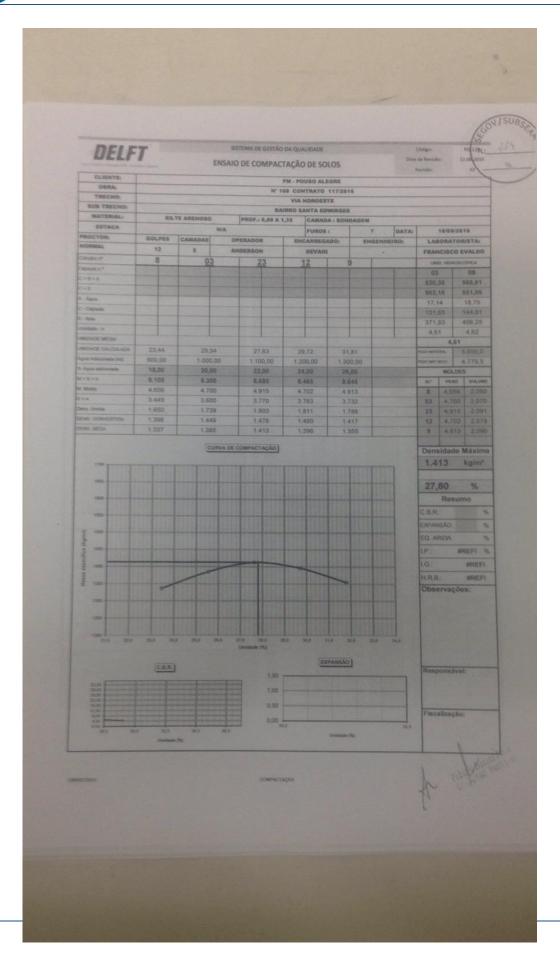


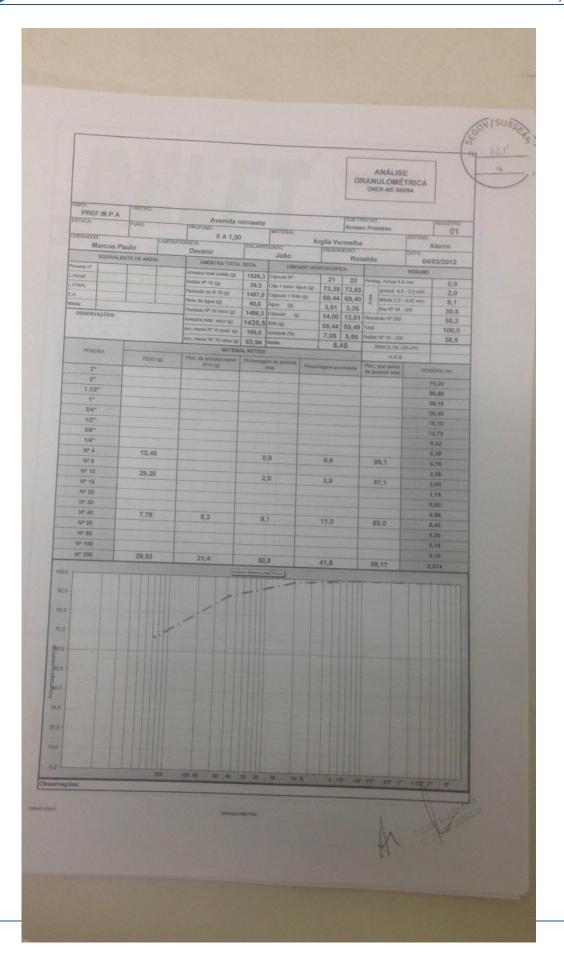


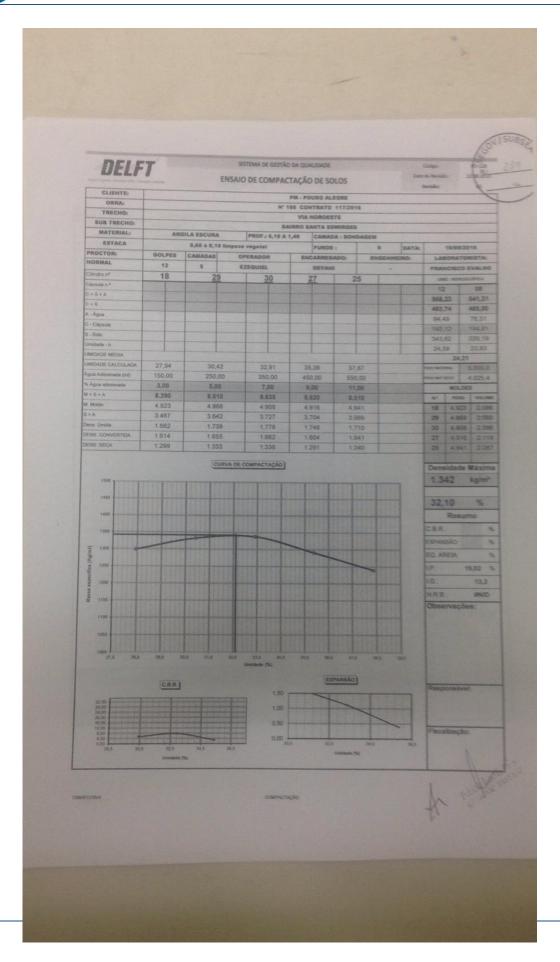


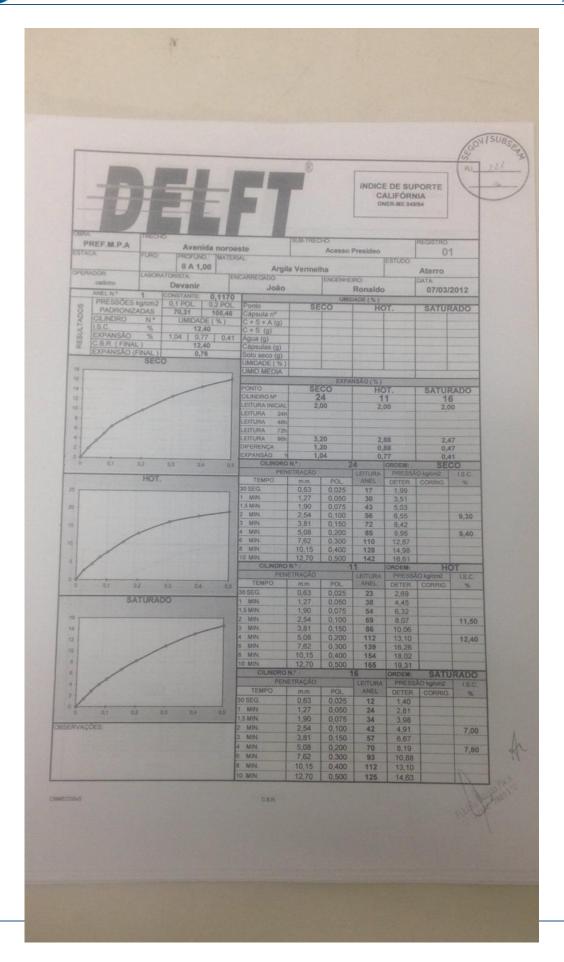


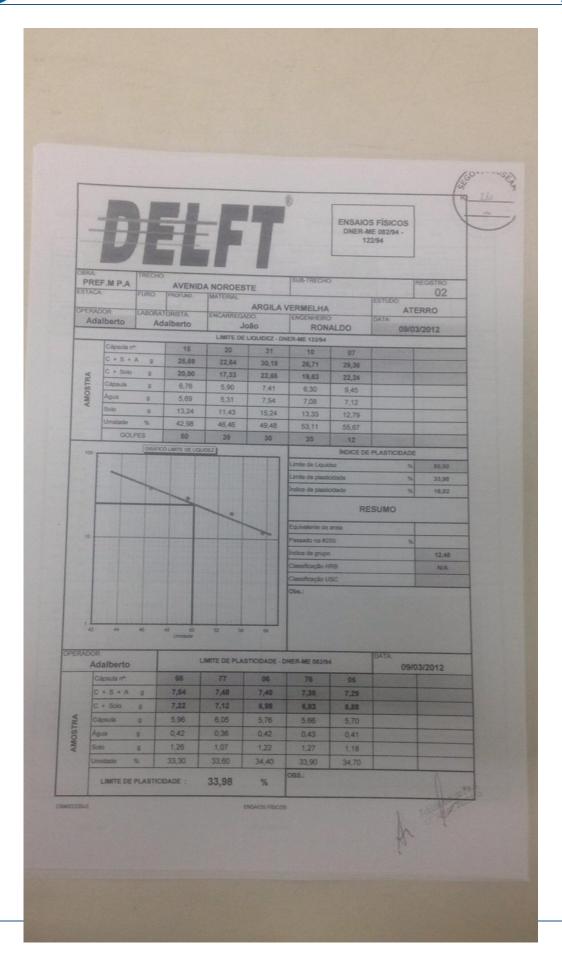
SUB-LETTO ALAN DEVANI N/A	DATA HE	108:2016	PROF:	CAMADA:	OPERAL	DOR:	ENCARREG	ADO:	ENG	ENHEIRO		(
Processor Proc		EQUIVAL EN	N/A	SUB-LEITO		ALAN			-	CHIEIRO		1
Product Prod	-	- CONTRACTOR	DE AREM		-		ADE HIGROSCÓ	PICA			RESUMO	
Part	-				2007,0	-		1000				T
Part	-			Passado na N 10 (g)	2007,0	Cápsula + Solo	-	-				
Annabis tests see (a) 187.0 506 (p) 67.70 50.42 75.81 75	_				20,0	Agus (g)	0.66	0,80				
An monor N° 10 cance (p) 208.3 (N° 102 0,00 Redo N° 10 - 200 N°	CBSER	VAÇÕES:		Amostra totali seca (g)	1967,0		-	110000				
PENCHINA PESO (g)				Am. menor Nº 10 úmid. (g)	208,3	Urridade (%)			1 5			
PESO (g) Proc. da anceiro monor percer la anceiro del anceiro del anceiro del Percerdagen acumulado de anceiro base PENER del anceiro base del Percerdagen acumulado de anceiro base PENER del Sala Sala Sala Sala Sala Sala Sala Sa	FIRE						-	The same of the sa		DICE DE G	RUPO	
3" N°10 (g) Votal Percentagem acumulates PENEER PROTECTION AS A service to test PENEER PROTECTIO	PEN	ERA	PESO (g)	Porc. da amostra menor	Porcentag	em da amostra			P.		100	
1.12" 34" 34" 34" 34" 34" 34" 34" 3				N*10 (g)		total	Porcertagers a	cumulada	da arre	outra total		
33,7 334" 334" 342" 35,85 11,8 98,2 9,5 11,8 98,2 9,5 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 9,5 6,3 11,8 98,2 98,3 11,8 98,2 1												
364" 112" 388" 38,88 11,8 98,2 9,5; 114" 1,8 98,2 9,5; 114" 1,8 98,2 9,5; 114" 1,8 98,2 9,5; 117" 114" 1,8 98,2 9,5; 115" 114" 1,8 98,2 9,5; 1,3 1,8 98,2 9,5; 1,18 132,30 16,7 93,3 2,00 11,18 132,30 16,7 93,3 2,00 11,18 132,30 10,88 11,8 98,2 9,5,2 11,18 132,30 10,18 10												
114" 114" 114" 114" 114" 114" 114" 114"												
1/4" 1/4"		-										
N° 4 87,59 3,4 96,6 4,77 N° 10 132,30 6,7 93,3 2,00 N° 10 132,30 6,7 93,3 2,00 N° 20 74,77 12,0 88,0 82,1 0,42 N° 20 76,61 37,2 62,6 58,7 0,074 N° 200 76,61 37,2 62,6 58,7 0,07			36,66				18			82		
N° 8 N° 10 132,30 N° 15 N° 20 N° 20 N° 40 N° 40 24,77 12,0 88,0 82,1 0,42 N° 40 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 82,1 0,42 88,0 88,0 82,1 0,42 88,0 88,0 88,0 88,0 88,0 88,0 88,0 88,			-				1,0		3	7,2		
N° 16 N° 20 N° 20 N° 30 N° 40 N° 50 N° 50 N° 100 N° 200 N°			01,58				3,4		96	5,6		
N° 20 1,19 N° 20 1,19 N° 20 1,00 N° 40 24,77 12,0 88,0 82,1 0,42 N° 80 0,30 N° 100 76,81 37.2 62,8 58,7 0,074 FAIXA FENERA VALCR MINIMO VALCR MAXIMO M.E 2 25,40 0,00 1 12,70 0,00 10 2,00 4 4,78 10 2,00 10 0,42			132,30				-			28		
M* 30 M* 40 24,77 12,0 88,0 62,1 0,59 0,59 N* 50 N* 100 N* 100 76,81 37,2 62,8 58,7 0,074 FAIXA FENERA VALOR MAXIMO VALOR MAXIMO 1 12,70 38 9,52 4 4,78 10 2,00 10 0,42							5,7		93	3,3		
M* 40 24.77 12.0 88.0 82.1 0,59 M* 50												
N° 50 N° 100 N° 100 N° 200 N°			24.77	120								
M° 190 76,61 37.2 62,6 58,7 0,074 FANCA FENERIA N° mm VALOR MINIMO VALOR MÁXIMO 80.0 1 12,70 9 70.0 1 12,70 9 70.0 1 02,70 10.0 1 02,			THE REAL PROPERTY.	20			88.0		82	1,1		
N° 200 76,61 37.2 62,6 58,7 0,074												
FAXA FENERA N* mm VALOR MAXMO 1 12,70 38 9,52 4 4,76 10 2,00 10 0,42 FAXA FA			78.64	22.2		6 1991						
PENERR Nº mm VALOR MNIMO VALOR MAXIMO 1005 2 25,40 1 12,70 38 9,52 4 4,78 10 2,00 40 0,42				37,2			62,8		58.	.7		
2 25,40	The state of the s	RA .			100	•	THE P	TITI	2			
1 12,70 ms	Nº 1	mm	Charles Inches	WALCH MAKING	90,				-	Till I		
3/8 9,52	2	25,40		100000000000000000000000000000000000000	80	2						
308 9,52 4 4,78 10 2,00 40 0,42	2	12,70					1111					
4 4.78 E 4.00 10 2.00 40 0.42	3/8	9,52			3		1					
10 2.00 X0 X	4	-		Marin Control	-							
40 0,42 900												
	-	-										
0.0 0.074												

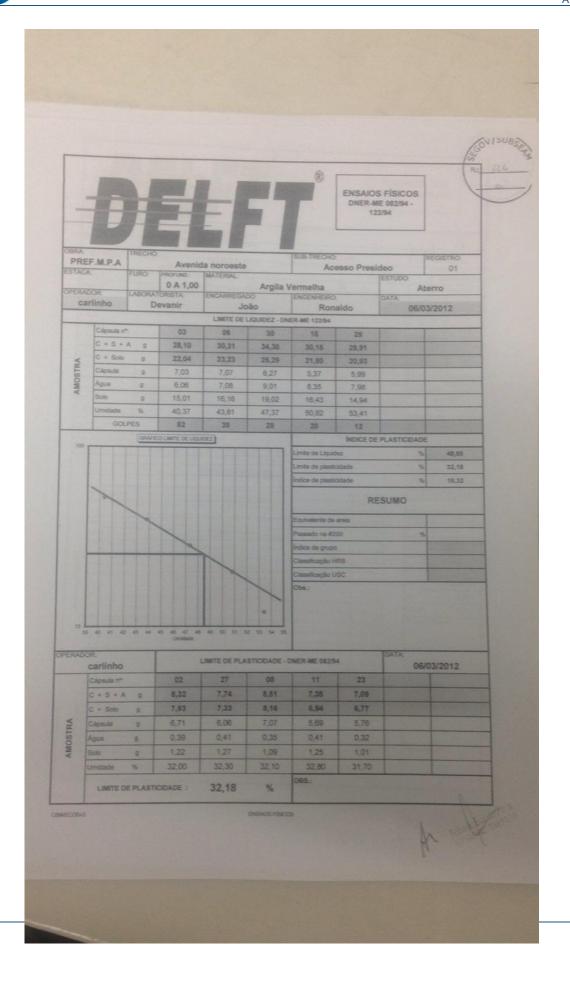


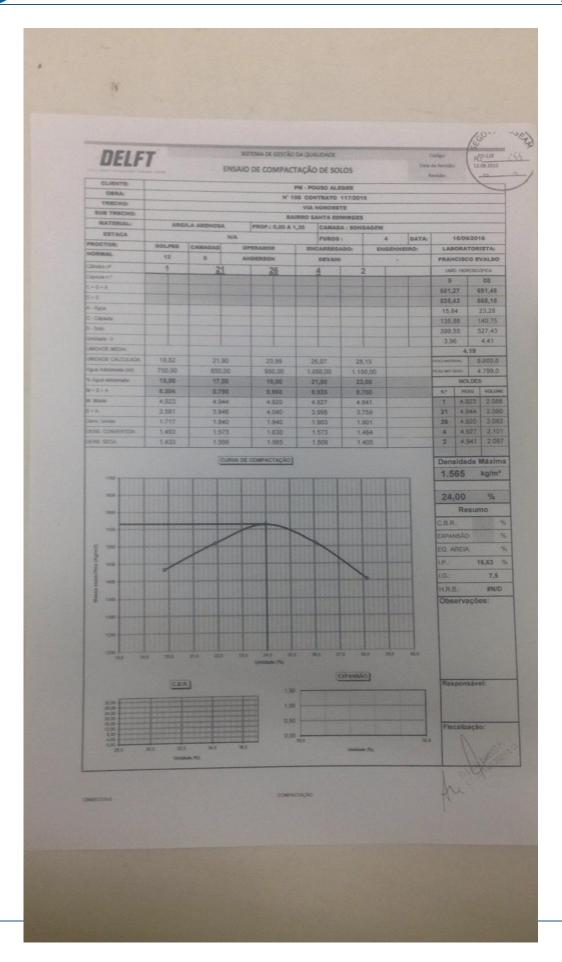


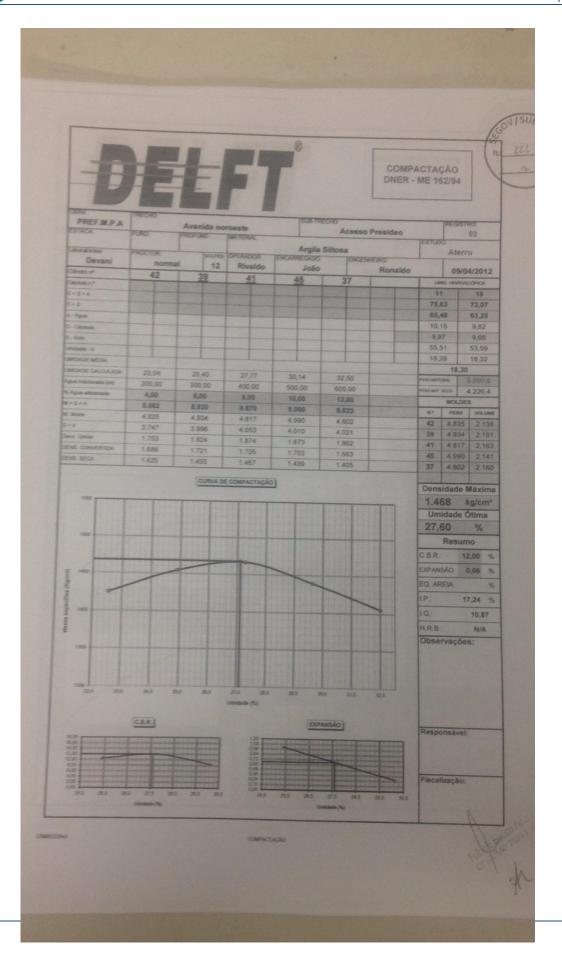


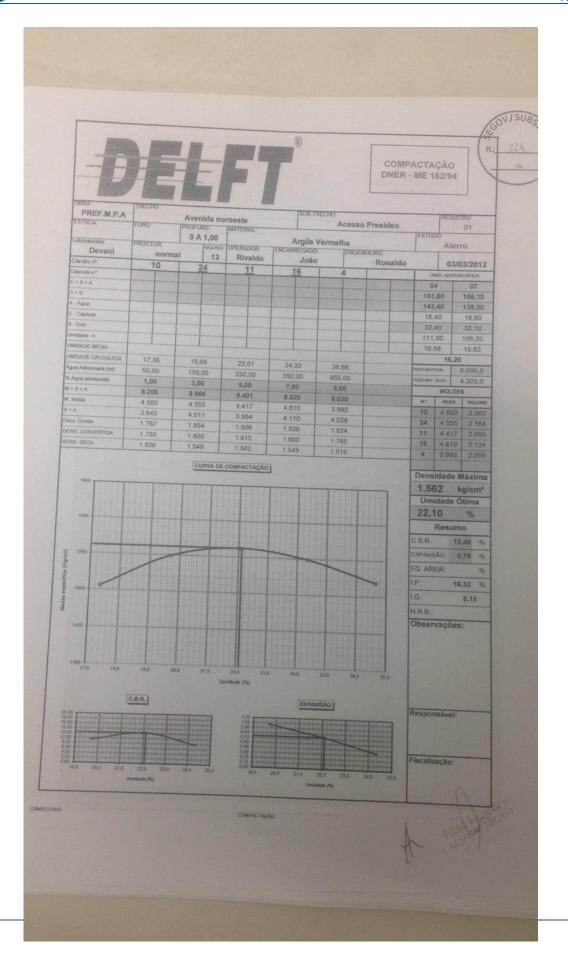


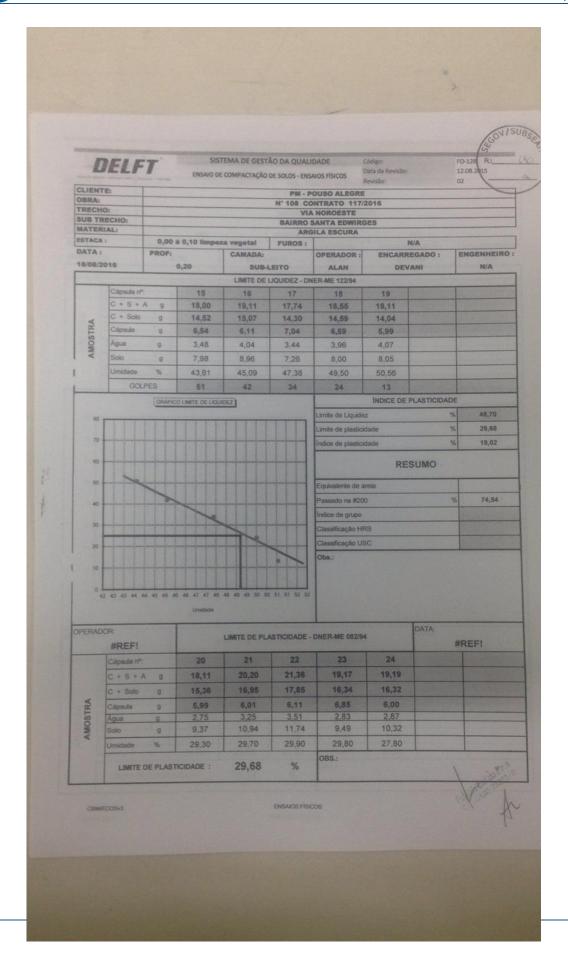












									(
387A-1698(20	IG PROP	CAMADA	7						1
	Mile.	SUB-LETTO	OPERAD	ALAH	EHGA	DEVAN		ENGENHEIRO I	MA
NGM Promiser	VALENTE DE AREIA.	AMOSTRA TOTAL			DE HIGH	ювсорк	EA .		RESUMO
Lincoln.		Acrosstra total direkta (g) Rasada Nº 10 (g)	2002,5	Cápula Nº Cáp + sito+ ág	us (g)	25 85,56	76,33	Fedreg Acims grosss 4,1	-
E/NAC		Postado na N 10 (g)	2002,0	Capouta - Solo		85,06	75,86	Modes 2.0	-0,42 mm
Massa.		Press da Agua (g) Pressado Nº 10 seco (g)	14,1	Agus (g) Căpsulia (g)		0,50	0,47	Fancando N	40 - 200 P-200
OMSERWAÇÕE	90	Amostra lotal secu (g)	1987,9	Sele (g)		70.50	66,29	Total	
100000		Aim. Human Nº 10 denid. (g) Aim. Human Nº 10 aicas (g)	200,4 196,95	Denidade (%) Média		0,71	71	Resido Nº 10 INDICE DE G	
PENERA		MATERS	AL RETID	9				H.R.B.	
7	PESC (g)	Porc. da amostra monor Nº10 (g)	rurombe	gem da amostra total	Porce	піврет во	umulada	Porc. que passe de emostre total	PUN
2									7 6
1,1627									3
34"									- 3
1/2"									
3/8"									
18.4	3,14					0,2		99,8	
M.S.									
Nº 10	12,16					0,6		99,4	
Nº 20									
M*30									
NF-40 NF-50	23,14	11,6				88,4		87,8	-
NF 92									
W 100									
Nº 200	FADA	47,4			7500	58,6		58,2	
PERA	VIII CO INDIANO	Lusi Cit and America		·ms	am				THE
Nº mm	VALOR MINIMO	VALOR MÁXIMO		10,0			H		
2 25,4	2			753					
1 12,71	2		1	W.3		1			
35 9,52			nodes.	10,0					
4 4,76			Patri	41.2					
10 2.00			1	MA					
40: 9,42				70.0					
200 0,074	TO THE STATE OF		1930	10.0 7			40.1.1.1	11111 10 1 1 3	IIIIII
200 Q.074				7				1	1
								H	-
				LONE THA					

Anexo II. DIMENSIONAMENTO HIDRÁULICO DA GALERIA DE ÁGUAS PLUVIAIS – R01

		PROJE		GALERIA DE ÁG JETO: AV NORO		LUVIAIS																	
	esc. superf. :	0.30	0.90	tc inicial	:		min anos				Bacia										D	ata	Folha 1
	Trecho	Ext.		Área de							Capac.	Oproj	Vproj					COTA	AS (m)		Pro	f. da	
			-	ontribuição (ha)	Δtc	tc	Intens.	Vazão	Seção	Dediv.	Máxima seção pl.	Qpl	Vpl	Vproj	y/D	y (m)		reno	_	eria	_	ria (m)	Degrau
Mont.	- Jus.	(m)	Parc.	Acum.	(min)	(min)	(mm/h)	(m³/s)	(m)	(m/m)	(m³/s)			(m/s)			Mont.	Jus.	Mont.	Jus.	Mont.	Jus.	(m)
		T							A NOROE										I				T
1	- 2	50.75	0.799	0.799	0.19	10.00	115.478	0.23	0.60	0.083	1.77	0.13	0.70	-	0.24	0.14	873.207	869.013	871.507	867.313	1.70	1.70	0.50
2	- 3	38.92	0.074	0.873	0.38	10.19	115.029	0.25	0.60	0.006	0.48	0.52	1.01	1.72	0.51	0.31	869.013	868.423	866.813	866.573	2.20	1.85	0.00
3	- 4	30.87	0.000	0.873	0.30	10.57	114.144	0.25	0.60	0.006	0.49	0.51	1.00	1.74	0.50	0.30	868.423	868.424	866.573	866.374	1.85	2.05	0.00
4	- 5	36.21	0.025	0.898	0.35	10.87	113.458	0.25	0.60	0.006	0.49	0.52	1.01	1.74	0.51	0.31	868.424	868.446	866.374	866.146	2.05	2.30	0.00
5	- 6	55.19	0.000	0.898	0.27	11.22	112.670	0.25	0.60	0.039	1.21	0.21	0.79	3.39	0.30	0.18	868.446	865.686	866.146	863.986	2.30	1.70	0.00
6	- 7	51.48	0.322	1.220	0.19	11.49	112.072	0.34	0.60	0.067	1.59	0.22	0.80	4.50	0.31	0.19	865.686	862.235	863.986	860.535	1.70	1.70	1.50
7	- 8	30.94	3.044	4.265	0.11	11.68	111.657	0.40	0.60	0.063	1.54	0.26	0.84	4.57	0.34	0.20	862.235	858.792	859.035	857.092	3.20	1.70	1.50
8	- 9	27.29	0.190	4.454	0.08	11.79	111.418	1.24	0.60	0.060	1.50	0.82	1.12	5.93	0.69	0.41	858.792	855.654	855.592	853.954	3.20	1.70	1.50
9	- 10	27.31	0.000	4.454	0.08	11.87	111.245	1.24	0.60	0.060	1.50	0.82	1.12	5.93	0.69	0.41	855.654	852.514	852.454	850.814	3.20	1.70	1.50
10	- 11	32.30	0.128	4.582	0.09	11.95	111.072	1.27	0.60	0.061	1.51	0.84	1.12	5.99	0.71	0.42	852.514	849.057	849.314	847.357	3.20	1.70	1.00
11	- 12	97.64	0.000	4.582	0.28	12.04	110.879	1.27	0.60	0.059	1.49	0.86	1.12	5.88	0.71	0.43	849.057	842.945	846.357	840.645	2.70	2.30	0.20
12	- 13	52.74	0.294	4.876	0.27	12.32	110.285	1.34	0.80	0.013	1.48	0.91	1.12	3.30	0.75	0.60	842.945	840.984	840.445	839.784	2.50	1.20	0.20
13	- 14	7.88	0.000	4.876	0.05	12.59	109.719	1.34	1.00	0.007	1.98	0.67	1.07	2.70	0.60	0.60	840.984	840.680	839.584	839.530	1.40	1.15	0.00
								RUA SA	BASTIÂO	THEODOR	O RIBEIRO												
15	- 16	70.05	0.397	0.397	0.41	10.00	115.478	0.11	0.60	0.043	1.27	0.09	0.63	2.83	0.20	0.12	846.996	844.000	845.296	842.300	1.70	1.70	0.00
16	- 17	60.86	0.857	1.254	0.49	10.41	114.514	0.36	0.60	0.008	0.54	0.66	1.07	2.06	0.59	0.35	844.000	843.523	842.300	841.823	1.70	1.70	0.00
17	- 18	41.88	0.543	1.796	0.32	10.90	113.390	0.51	0.60	0.008	0.55	0.92	1.13	2.21	0.76	0.46	843.523	843.233	841.823	841.483	1.70	1.75	0.00
18	- 19	15.73	0.000	1.796	0.11	11.22	112.670	0.51	0.60	0.009	0.60	0.85	1.12	2.37	0.71	0.42	843.233	842.834	841.483	841.334	1.75	1.50	0.00
			_		_		_					_		$\overline{}$	_				_				